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Abstract Any non-trivial program contains some errors in the source code. These
“bugs” are annoying for users if they lead to application crashes and data loss, and
they are worrisome if they lead to privacy leaks and security exploits. The economic
damage caused by software bugs can be huge, and when software controls safety
critical systems such as automotive software, then bugs can kill people. The pri-
mary tool to reveal and eliminate bugs is software testing: Testing a program means
executing it with a selected set of inputs and checking whether the program behaves
in the expected way; if it does not, then a bug has been detected. The aim of testing
is to find as many bugs as possible, but it is a difficult task as it is impossible to run
all possible tests on a program. The challenge of being a good tester is thus to iden-
tify which are the best tests that help us find bugs, and to execute them as efficiently
as possible. In this chapter, we explore different ways to measure how “good” a set
of tests is, as well as techniques to generate good sets of tests.
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1 Introduction

Software has bugs. This is unavoidable: Code is written by humans, and humans
make mistakes. Requirements can be ambiguous or wrong, requirements can be
misunderstood, software components can be misused, developers can make mis-
takes when writing code, and even code that was once working may no longer be
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José Miguel Rojas
Department of Informatics, University of Leicester, Leicester, United Kingdom, e-mail: j.rojas@
leicester.ac.uk

1

gordon.fraser@passau.de
gordon.fraser@passau.de
j.rojas@leicester.ac.uk
j.rojas@leicester.ac.uk


2 Gordon Fraser and José Miguel Rojas

correct when once previously valid assumptions no longer hold after changes. Soft-
ware testing is an intuitive response to this problem: We build a system, then we run
the system, and check if it is working as we expected.

While the principle is easy, testing well is not so easy. One main reason for this
is the sheer number of possible tests that exists for any non-trivial system. Even
a simple system that takes a single 32-bit integer number as input already has 232

possible tests. Which of these do we need to execute in order to ensure that we find
all bugs? Unfortunately, the answer to this is that we would need to execute all of
them — only if we execute all of the inputs and observe that the system produced
the expected outputs do we know for sure that there are no bugs. It is easy to see
that executing all tests simply does not scale. This fact is well captured by Dijkstra’s
famous observation that testing can never prove the absence of bugs, it can only
show the presence of bugs. The challenge thus lies in finding a subset of the possible
inputs to a system that will give us reasonable certainty that we have found the main
bugs.

If we do not select good tests, then the consequences can range from mild user
annoyance to catastrophic effects for users. History offers many famous examples
of the consequences of software bugs, and with increased dependence on software
systems in our daily lives we can expect that the influence of software bugs will
only increase. Some of the most infamous examples where software bugs caused
problems are the Therac-25 radiation therapy device (Leveson and Turner, 1993),
which gave six patients a radiation overdose, resulting in serious injury and death;
the Ariane 5 maiden flight (Dowson, 1997), which exploded 40 seconds after lift-off
because re-used software from the Ariane 4 system had not been tested sufficiently
on the new hardware, or the unintended acceleration problem in Toyota cars (Kane
et al, 2010), leading to fatal accidents and huge economic impact.

In this chapter, we will explore different approaches that address the problem
of how to select good tests. Which one of them is best suited will depend on many
different factors: What sources of information are available for test generation? Gen-
erally, the more information about the system we have, the better we can guide the
selection of tests. In the best case, we have the source code at hand while selecting
tests — this is known as white-box testing. However, we don’t always have access
to the full source code, for example when the program under test accesses web-
services. Indeed, as we will see there can be scenarios where we will want to guide
testing not (only) by the source code, but by its intended functionality as captured
by a specification – this is known as black-box testing. We may even face a scenario
where we have neither source code, nor specification of the system, and even for
this case we will see techniques that help us selecting tests.

Even if we have a good technique to select tests, there remain related questions
such as, who does the testing, and when is the testing done? It is generally accepted
that fixing software bugs gets more expensive the later they are detected (more peo-
ple get affected, applying a fix becomes more difficult, etc.), hence the answer to
the question of when to test is usually “as soon as possible”. Indeed, some tests can
be generated even before code has been written, based on a specification of the sys-
tem, and developers nowadays often apply a test-driven development methodology,
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where they first write some tests, and then follow up with code that makes these
tests pass. This illustrates that the question of who does the testing is not so obvi-
ous to answer: For many years, it has been common wisdom that developers will be
less effective at testing their own code as external people who did not put their own
effort into building the software. Developers will test their own code gentler, and
may make the same wrong assumptions when creating tests as when creating code.
Indeed, testing is a somewhat destructive activity, whereby one aims to find a way to
break the system, and an external person may be better suited for this. Traditionally,
software testing was therefore done by dedicated QA teams, or even outsourced to
external testing companies. However, there appears to be a recent shift towards in-
creased developer testing, inspired by a proliferation of tools and techniques around
test-driven and behavior-driven development. This chapter aims to provide a holistic
overview of testing suitable for a traditional QA perspective as well as a developer-
driven testing perspective.

Although many introductions to software testing begin by explaining the life-
threatening effects that software bugs can have (this chapter being no exception), it is
often simply economic considerations that drive testing. Bugs cost money. However,
testing also costs money. Indeed, there is a piece of common wisdom that says that
testing amounts to half of the costs of producing a software system (Tassey, 2002).
Thus, the question of testing well does not only mean to select the best tests, but it
also means to do testing well with as few as necessary tests and to use these tests
as efficiently as possible. With increased automation in software testing, tests are
nowadays often executed automatically: Tests implemented using standard xUnit
frameworks such as JUnit are often executed many times a day, over and over again.
Thus, the costs of software testing do not only lie in creating a good test set, but
also being efficient about running these tests. After discussing the fundamentals of
testing, in the final part of this chapter we will also look at considerations regarding
the efficiency of running tests.

2 Concepts and Principles

Software Testing is the process of exercising a software system using a variety of
inputs with the intention of validating its behavior and discovering faults. These
faults, also known as bugs or defects, can cause failures in their software systems. A
fault can be due to errors in logic or coding, often related to misinterpretation of user
requirements, and they are in general inevitable due to the inherent human nature of
software developers. Failures are the manifestation of faults as misbehaviors of the
software system.

A test case is a combination of input values that exercises some behavior of the
software under test. A program “input” can be any means of interacting with the
program. If we are testing a function, then the inputs to the function are its param-
eters. If we are testing an Android app, then the inputs will be events on the user
interface. If we are testing a network protocol, the inputs are network packets. If we
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1 int power(int b, int e){
2 if (e < 0)
3 throw new Exception("Negative exponent");
4 if ((b == 0) && (e == 0))
5 throw new Exception("Undefined");
6 int r = 1;
7 while (e > 0){
8 r = r * b;
9 e = e - 1;

10 }
11 return r;
12 }

Fig. 1: Running example

are testing a word processor application, the inputs can either be user interactions,
or (XML) documents. To validate the observed behavior of the software under test,
a test case consists not only of these inputs, but also of a test oracle, which spec-
ifies an output value (e.g., return value, console output, file, network packet, etc.)
or behavior that is expected to match the actual output produced by the software. A
collection of test cases is referred to as a test suite (or simply a test set).

Example 1 (Power function). Let us introduce a running example for the remain-
der of this chapter. The example presented in Figure 1 consists of a single method
power which takes two integer arguments b (base) and e (exponent) as input and
returns the result of computing b to the power of e. Two exceptional cases are
checked at the beginning of the function: first, the exponent e cannot be negative,
and second, the base b and the exponent e cannot equal zero at the same time. The
resulting variable r is initialised to one and multiplied e times by b.

A test case for the power function consists of values for the two input param-
eters, b and e; for example, the test input (0,0) would represent the case of 00.
Besides the test input, a test case needs to check the output of the system when ex-
ercised with the input. In the case of input (0,0) we expect the system to throw an
exception saying that the behavior is undefined (see lines 4 and 5 of the example),
so the test oracle consists of checking whether the exception actually occurs. If the
exception does occur, then the test has passed, else it has failed and has revealed a
bug that requires debugging and fixing.

Although software testing can be, and often is, performed manually, it is gen-
erally desirable to automate testing. First, this means that test execution can be re-
peated as many times as desired; second, it reduces a source of error (the human)
during repeated executions; and third, it is usually just much quicker. In order to au-
tomate execution, a test case requires a test driver, which is responsible for bringing
the system under test (SUT) into the desired state, applying the input, and validating
the output using the test oracle. A common way to create test drivers is to use pro-
gramming languages; for example, scripting languages like Python are well suited
and often used to create complex testing frameworks. A further popular approach
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lies in re-using existing testing frameworks, in particular the xUnit frameworks. We
use the name xUnit to represent unit testing frameworks that exist for many different
programming languages; for example, the Java variant is called JUnit, the Python
variant is pyUnit, etc. The following snippet shows two example test cases for the
power function using JUnit:

1 @Test
2 public void testPowerOf0() {
3 try {
4 power(0, 0);
5 fail("Expected exception");
6 } catch(Exception e) {
7 // Expected exception occurred, all is fine
8 }
9 }

10

11 @Test
12 public void testPowerOf2() {
13 int result = power(2, 2);
14 assertEquals(4, result);
15 }

The first test (testPowerOf0) is an implementation of our (0,0) example,
and uses a common pattern with which expected exceptions are specified. If the
exception does not occur, then the execution continues after the call to power to
the fail statement, which is a JUnit assertion that declares this test case to have
failed. For reference, the snippet includes a second test (testPowerOf2) which
exemplifies a test that checks for regular behavior, with inputs (2,2).

The name of testing frameworks like JUnit derives from the original intention
to apply them to unit testing. This refers to the different levels at which testing can
be applied. Figure 2 summarizes the main test levels: At the lowest level, individual
units of code (e.g., methods, functions, classes, components) are tested individually;
in our case this would, for example, be the power function. This is now often
done by the developer who implemented the same code. If individual units of code
access other units, it may happen that these other dependency units have not yet
been implemented. In this case, to unit test a component its dependencies need to
be replaced with stubs. A stub behaves like the component it replaces, but only for
the particular scenario that is of relevance for the test. For example, when “stubbing
out” the power function, we might replace it with a dummy function that always
returns 0, if we know that in our test scenario the power function will always be
called with e=0. In practice, stubbing is supported by the many different mocking
frameworks, such as Mockito or EasyMock for Java. A mock takes the idea of a
stub a step further, and also verifies how the code under test interacted with the stub
implementation. This makes it possible to identify changes and errors in behavior.

Technically, in a unit test the unit under test should be accessed completely iso-
lated from everything else in the code. There are many followers of an approach of
“pure” unit testing, which means that everything the unit under test accesses needs
to be replaced with mocks or stubs. However, this approach has a downside in that
the mocks need to be maintained in order to make sure their behavior is in sync
with the actual implementations. Therefore, unit testing is often also implemented
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Fig. 2: Test levels illustrated: The power function is an individual unit; integration
testing considers the interactions between different classes, such as the one contain-
ing the power function. System tests interact with the user interface, for example
a calculator application that makes use of the integrated units. Acceptance testing
is similar to system testing, but it is done by the customer, to validate whether the
requirements are satisfied.

in a way that the unit under test may access other units. If tests explicitly target
the interactions between different components, then they are no longer unit tests
but integration tests. In Figure 2, the integration tests consider interactions between
the class containing our power function and other classes in the same application.
In practice, these are also often implemented using frameworks like JUnit as test
drivers, and resort to stubs and mocks in order to replace components that are not
yet implemented or irrelevant for the test.
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If the system as a whole is tested, this is known as system testing. The concept of
a test driver still applies, but what constitutes an input usually changes. In our ex-
ample (Figure 2), the program under test has a graphical user interface, a calculator
application, and test inputs are interactions with this user interface. Nevertheless, it
is still possible to automate system tests using test frameworks such as JUnit; for
example, a common way to automate system tests for web application is to define
sequences of actions using the Selenium1 driver and its JUnit bindings. Frameworks
like Selenium make it possible to programmatically access user interface elements
(e.g., click buttons, enter text, etc.) A very closely related activity is acceptance
testing, which typically also consists of interacting with the fully assembled sys-
tem. The main difference is that the aim of system testing is to find faults in the
system, whereas the aim of acceptance testing is to determine whether the system
satisfies the user requirements. As such, acceptance testing is often performed by
the customer (see Figure 2).

One of the advantages of automating test execution lies in the possibility to fre-
quently re-execute tests. This is particularly done as part of regression testing, which
is applied every time a system has been changed in order to check that there are no
unintended side-effects to the changes, and to make sure old, fixed bugs are not
unintentionally re-introduced. Regression testing is often performed on a daily ba-
sis, as part of continuous integration, but unit tests are also frequently executed by
developers while writing code. Because executing all tests can be computationally
expensive – and even unnecessary – there exist various approaches that aim to re-
duce the executions costs by prioritizing tests, minimizing test sets, and selecting
tests for re-execution.

Even though the existence of convenient testing frameworks and strategies to
reduce the execution costs allow us to create large test suites, Dijkstra’s quote men-
tioned in the introduction still holds: We cannot show the absence of bugs with
testing, only the presence. This is because for any non-trivial system the number
of test cases is so large that we cannot feasible execute all of them. Consider the
power example with its two integer inputs. If we assume that we are testing the im-
plementation on a system where integers are 32-bit numbers, this means that there
are 2322

= 1.8× 1019 possible inputs. To exhaustively test the program we would
need to execute every single of these inputs, and check every single of the outputs.
If we had a computer able to execute and check one billion tests per second (which
would be quite a computer!) then running all these tests would still take 585 years.
Because executing all tests clearly is not feasible, the main challenge in testing lies
in identifying what constitutes an adequate test suite, and how to generate it. The
main part of this chapter will focus on these two central problems.

Strategies to reason about test adequacy as well as strategies to select tests are
often categorised into white-box and black-box techniques. In black-box testing we
assume no knowledge about the internal implementation of a system, but only about
its interfaces and specification. In contrast, white-box testing assumes that we have
access to the internal components of the system (e.g., its source code), and can use

1 Selenium - A suite of browser automation tools. http://seleniumhq.org. Accessed March 2017.

http://seleniumhq.org
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that to measure test adequacy and guide test generation. The latter approach often
reduces to considering the structure of the source code; for example, one strategy
might be to ensure that all statements in the program are executed by some test. This
type of testing is therefore often also referred to as structural testing. Black-box
testing, on the other hand, is usually concerned with how the specified functionality
has been implemented, and is thus referred to as functional testing.

In this chapter, we are mainly considering structural and functional testing tech-
niques, and also assume that the aim of structural testing lies in checking functional
behavior. We discuss techniques to manually and automatically derive tests based
on both view-points. However, in practice there are many further dimensions to test-
ing besides checking the functionality: We might be interested in checking whether
the performance of the system is adequate, whether there are problems with its en-
ergy consumption, whether the system response time is adequately short, and so
on. These are non-functional properties, and if the aim of testing is to validate such
properties we speak of non-functional testing. While non-functional tests are sim-
ilar to functional tests in that they consist of test inputs and oracles, they differ in
what constitutes a test oracle, and in the strategies to devise good tests. However,
the dominant testing activity is functional testing, and most systematic approaches
are related to functional testing, and hence the remainder of this chapter will focus
on functional testing.

3 Organized Tour: Genealogy and Seminal Works

3.1 Analysing Tests

Since we cannot exhaustively test a software system, the two central questions in
software testing are (a) what constitutes an adequate test suite, and (b) how do we
generate a finite test suite that satisfies these adequacy criteria. Since these questions
were first posed by Goodenough and Gerhart (1975), they have featured prominently
in software testing research. While Goodenough and Gerhard defined a test suite as
adequate if its correct execution implies no errors in the program, more pragmatic
solutions are based on a basic insight: If some unit of code is not executed, i.e.,
covered, then by definition, testing cannot reveal any faults contained in it. The
adequacy of a test suite can therefore be measured by how much of a program is
covered by the test suite. While ideally one would like to know how much of the
possible behavior of the program is covered, there is no easy way to quantify cov-
erage of behavior, and therefore the majority of adequacy criteria revolve around
proxy measurements related to program code or specifications.

Many coverage criteria have proposed over time, and a primary source of infor-
mation is the extensive survey by Zhu et al (1997). A coverage criterion in software
testing serves three main purposes. First, it answers the question of adequacy: Have
we tested enough? If so, we can stop adding more tests, and the coverage criterion
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thus serves as a stopping criterion. Second, it provides a way to quantify adequacy:
We can measure not only whether we have tested enough based on our adequacy
criterion, but also how much of the underlying proxy measurement we have cov-
ered. Even if we have not fully covered a program, does a given test suite represent
a decent effort, or has the program not been tested at all? Third, coverage criteria
can serve as generation criteria that help a tester decide what test to add next.

Coverage can be measured on source code or specifications. Measurement on
specifications is highly dependent on the underlying specification formalism, and
we refer to the survey of Zhu et al (1997) for a more detailed discussion. In this
section, we focus on the more general notion of code coverage. Figure 3 presents a
genealogy tree of the work described in this section.

Test Analysis
(Goodenough and

Gerhart, 1975)

Structural Testing
(Miller and Maloney, 1963;

Huang, 1975)

Domain Testing
(White and Cohen, 1980)

Logical Coverage
(Chilenski and Miller, 1994;

Ammann et al, 2003)

Specification-based Testing
(Stocks and Carrington, 1996)

Dataflow Testing
(Rapps and Weyuker, 1985)

OO Dataflow Testing
(Harrold and Rothermel, 1994)

Mutation Testing
(Acree, 1980; DeMillo et al,

1978)

Selective Mutation
(Offutt et al, 1993)

Real Faults
(Just et al, 2014; Andrews et al, 2005)

Meta-mutants
(Untch et al, 1993)

Concurrency Testing
(Yang et al, 1998; Bron et al,

2005; Lu et al, 2007)

GUI Coverage
(Memon et al, 2001)

Fig. 3: Analysing Tests: Genealogy Tree

3.1.1 Structural Testing

The idea of code coverage is intuitive and simple: If no test executes a buggy state-
ment, then the bug cannot be found, hence every statement should be covered by
some test. This idea dates back to early work by Miller and Maloney (1963), and
later work defines criteria with respect to coverage of various aspects of the control
flow of a program under test; these are thoroughly summarized by Zhu et al (1997).

Statement coverage is the most basic criterion; a test suite is considered to be
adequate according to statement coverage if all statements have been executed. For
example, to adequately cover all statements in Figure 1, we would need three tests:
One where e < 0, one where b == 0 and e == 0, and one where e > 0. Because
full coverage is not always feasible, one can quantify the degree of coverage as the
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percentage of statements covered. For example, if we only took the first two tests
from above example, i.e., only the tests that cover the exceptional cases, then we
would cover 4 statements (line 2–5), but we would not cover the statements in lines
6–9 and 11 (the closing brace in line 10 does not count as a statement). This would
give us 4/9 statements covered, or in other words, 44.4% statement coverage.

An interesting aspect of statement coverage is that it is quite easy to visualize
achieved coverage, in order to help developers improve the code coverage of their
tests. For example, there are many popular code coverage frameworks for the Java
language, such as Cobertura2 or JaCoCo3. Covered statements are typically high-
lighted in a different colour to those not covered, as in the following example:

1 ,int power(int b, int e){
2 , if (e < 0)
3 , throw new Exception("Negative exponent");
4 , if ((b == 0) && (e == 0))
5 , throw new Exception("Undefined");
6 , int r = 1;
7 , while (e > 0){
8 , r = r * b;
9 , e = e - 1;

10 , }
11 , return r;
12 ,}

Statement coverage is generally seen as a weak criterion, although in practice
it is one of the most common criteria used. One reason for this is that it is very
intuitive and easy to understand. Stronger criteria, as for example summarized by
Zhu et al (1997), are often based on the control flow graph of the program under
test. Consider Figure 4, which shows the control flow graph of the power function;
a test suite that achieves statement coverage would cover all nodes of the graph.
However, a test suite that covers all statements does not necessarily cover all edges
of the graph. For example, consider the following snippet:

1 if(e < 0)
2 e = 0;
3 if(b == 0)
4 b = 1;

It is possible to achieve 100% statement coverage of this snippet with a single test
where e is less than 0, and b equals 0. This test case would make both if-conditions
evaluate to true, but there would be no test case where either of the conditions eval-
uates to false. Branch coverage captures the notion of coverage of all edges in the
control flow graph, which means that each if-condition requires at least one test
where it evaluates to true, and at least one test where it evaluates to false. In the case
of above snippet, we would need at least two test cases to achieve this, such that one
test sets e < 0 and the other e ≥ 0, and one test sets b == 0 and the other b 6= 0.

2 Cobertura - A code coverage utility for Java. http://cobertura.github.io/cobertura. Accessed
March 2017.
3 JaCoCo - Java Code Coverage Library. http://www.eclemma.org/jacoco. Accessed March 2017.

http://cobertura.github.io/cobertura
http://www.eclemma.org/jacoco
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Fig. 4: Control flow graph of the power function

Further criteria can be defined on the control flow graph, and the strongest criterion
is path coverage, which requires that all paths in the control flow graph are covered.
This, however, is rarely a practical criterion. Consider Figure 4: There are two paths
defined by the two error checking conditions that end with throwing an exception,
but then there is a loop depending on the input parameter e. Every different positive
value of e results in a different path through the control flow graph, as it leads to a
different number of loop executions. Assuming that e is a 32-bit number (i.e., 231

possible positive values), the number of paths through the power function is thus
231 +2.

Note that these path-oriented adequacy criteria mainly focus on what is known as
computation errors (Howden, 1976), where the input of the program usually follows
the correct path, but some error in the computation leads to an incorrect result. As
domain errors, where the computation is correct but the wrong path is chosen, may
not always be detected by these criteria, the alternative of domain testing (White
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and Cohen, 1980) explores values in particular around the boundaries of domains to
check that these are correctly implemented. For more details about this approach to
testing we refer to Section 3.3.1.

3.1.2 Logical Coverage Criteria

To reduce the number of possible paths to consider for a coverage criterion com-
pared to the impractical path coverage, but to still achieve a more rigorous testing
than the basic statement and branch coverage criteria, a common approach lies in
defining advanced criteria on the logical conditions contained in the code. For ex-
ample, the second if-condition in Figure 1 (if ((b == 0) && (e == 0)))
consists of a conjunction of two basic conditions. We can achieve full branch cov-
erage on this program without ever setting b to a non-zero value, and so we would
be missing out on potentially interesting program behavior. Condition coverage re-
quires that each of the basic conditions evaluates to true and to false, such that we
could cover the case where b == 0 as well as b 6= 0. However, covering all condi-
tions in this way does not guarantee that all branches are covered. For example, the
pair of tests b = 0,e = 1, b = 1,e = 0 covers all conditions, yet does not cover the
branch where the overall conjunction evaluates to true. A possible alternative lies in
multiple condition coverage, which requires that all possible combinations of truth
value assignments to basic conditions are covered; in this case that means four tests.

As multiple condition coverage may lead to large numbers of tests for complex
conditions, modified condition/decision coverage (MC/DC4) has been proposed as
an alternative, and achieving full MC/DC is also required in domains such as avion-
ics by standards like the DOI-178b. MC/DC was defined by Chilenski and Miller
(1994), and requires that for each basic condition there is a pair of tests that shows
how this condition affects the overall outcome of the decision. MC/DC subsumes
branch and condition coverage, and selects all interesting cases out of those de-
scribed by multiple condition coverage. However, there is some ambiguity in the
definition of MC/DC, and so Chilenski provides a discussion of three different in-
terpretations (Chilenski, 2001). Note that the use of short-circuiting operators in
many programming languages has an influence on criteria like multiple condition
coverage or MC/DC, as not every combination of truth values of the basic condi-
tions is actually feasible. For example, consider again the example expression if
((b == 0) && (e == 0)): To cover the full decision, MC/DC would require
covering the case where b == 0 and e == 0 are true, and the two cases where
either b != 0 or e != 0 is true and the other condition if false. However, if b
!= 0, then with short-circuiting the expression e == 0 would never be evaluated
since the overall decision can only be false. This, however, means that a test case (b
!= 0, e == 0) cannot be executed.

4 There is a slight controversy about whether the acronym should be “MC/DC” or “MCDC”. Anec-
dotal evidence suggests that Chilenski had not intended to use the version with slash. However, this
is the version dominantly used in the literature nowadays, so we will also use it.
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1 int power(int b, int e){
2 if (e < 0)
3 throw new Exception("...");
4 if ((b == 0) && (e == 0))
5 throw new Exception("...");
6 int r = 1;
7 while (e > 0){
8 r = r * b;
9 e = e - 1;

10 }
11 return r;
12 }

(a) Definitions

1 int power(int b, int e){
2 if (e < 0)
3 throw new Exception("...");
4 if ((b == 0) && (e == 0))
5 throw new Exception("...");
6 int r = 1;
7 while (e > 0){
8 r = r * b;
9 e = e - 1;

10 }
11 return r;
12 }

(b) Uses

Fig. 5: Definitions and uses for the variables b, e, and r in the power function.

However, logical conditions are not only found in conditional statements in
source code, but can also as part of specifications, ranging from natural language
specifications and requirements to formal specifications languages and models. In
these settings short-circuit evaluation is rare, and thus criteria like MC/DC are par-
ticularly important there. Since there are various slightly differing definitions of
MC/DC and the many other criteria for logical conditions, Ammann et al (2003)
summarized these criteria using precise definitions. These definitions also form the
basis of their well-known book (Ammann and Offutt, 2016).

There are also specific logical coverage criteria for purely Boolean specifications.
For example, Weyuker et al (1994) investigated different fault classes for Boolean
specifications written in disjunctive normal form, as well as techniques to automat-
ically generate test data to detect these fault classes. This has opened up a wide
range of work on testing of Boolean specifications, for example criteria such as
MUMCUT (Chen et al, 1999), and automated test generation strategies such as the
use of model checkers (Gargantini and Heitmeyer, 1999) to derive Boolean value
assignments to logical formulas so that different logical coverage criteria are sat-
isfied. These approaches are generally related to the wider area of test adequacy
criteria based on formal specifications, as for example described in the Test Tem-
plate Framework by Stocks and Carrington (1996), which defines general strategies
on which tests to derive from specifications.

3.1.3 Dataflow Testing

A alternative approach to defining coverage is based on the insight that many errors
result from how variables are assigned new data, and how these data are used later in
the program; this is known as dataflow testing. When a variable is assigned a value,
this is a definition of the variable. For example, in Figure 5a shows the definitions of
the power function from Figure 1. Variable r is defined in lines 6 and 8. Variables
b and e have an implicit definition at function entry in line 1, and e has a further
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Table 1: Definition-use pairs for the power function

Variable Def-Use pairs

b (1, 4), (1, 8)
e (1, 2), (1, 4), (1, 7), (1, 9), (9, 7), (9, 9)
r (6, 8), (6, 11), (8, 8), (8, 11)

definition in line 9. There are two different ways variables can be used, as shown
in Figure 5b: They can be used as part of a new computation; for example, Line 8
contains a use of variable b, and Line 9 contains a use of variable e. Alternatively,
variables can be used as part of predicates, such as e in Lines 2, 4, and 7, and
b in Line 4. In essence, dataflow testing aims to cover different combinations of
definitions and uses.

A pair of a definition of a variable and its use is called a def-use pair. There
is, however, an important aspect to consider: The execution path leading from the
definition to the use must not contain a further definition of the same variable, as
the value that would be used would no longer be the one originally defined; the re-
definition of the variable is said to kill the first definition. For example, the def-use
pair consisting of the definition of r in Line 6 of Figure 1 and the use in Line 11
is only covered by a test case that leads to the while loop not being executed at all,
e.g. by setting e to 0 and b to a non-zero value. Any test where e is greater than 0
would execute Line 8 before reaching Line 11, and so the definition in Line 6 would
always be killed by the definition in Line 8. Table 1 lists all the definition-use pairs
of our example power function.

There are different families of dataflow coverage criteria, and these are discussed
in depth in the survey paper by Zhu et al (1997). The seminal paper introducing
dataflow coverage criteria was written by Rapps and Weyuker (1985), who define
some basic criteria like All-Defs coverage, which requires that for every definition
of a variable there is a test such that the definition is used; All-Uses coverage re-
quires that each possible def-use pair is covered. A related set of criteria (k-tuples)
is presented by Ntafos (1988), and discussed in detail by Zhu et al (1997). However,
all these discussions refer only to basic intra-procedural dataflow, whereas object-
orientation provides new possibilities for dataflow through object and class states;
dataflow testing is extended to the object-oriented setting by Harrold and Rothermel
(1994).

The dataflow concepts used in dataflow testing date back to the early days of
compiler optimizations, and the analysis of dataflow in order to identify faults in
source code was popularized in the 70s (Fosdick and Osterweil, 1976). For example,
the seminal DAVE framework (Osterweil and Fosdick, 1976) enabled detection of
various dataflow analyses and was used for a variety of follow-up work. In contrast
to the approaches described in this section, however, classical dataflow analysis is
a static analysis, i.e., it does not rely on program executions, like dataflow testing
does.
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power(0, 0)

int power(int b, int a) {
 ...
 if(b==0 && e==0) {
 ...
}

int power(int b, int a) {
 ...
 if(true && e==0) { 
 ...
}

int power(int b, int a) {
 ...
 if(b==0 && e > 0) {
 ...
}
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Fig. 6: Overview of the mutation testing process: Mutation operators are applied to
the program under test to produce mutants. Tests are executed on all mutants; if a
test fails on a mutant but passes on the original program, then the mutant is killed. If
there is no test that kills the mutant, the mutant is live, and likely reveals a weakness
in the test suite.

3.1.4 Mutation Testing

Mutation testing, also known as fault-based testing, was independently introduced
by Acree (1980) in his PhD thesis, and by DeMillo et al (1978). The idea is to use
the ability to detect seeded artificial faults in the system under test as a means to
guide and evaluate testing, rather than relying on structural properties. The over-
all approach is summarized in Figure 6: The starting point of mutation testing is a
program and a set of tests, which all pass on the program. The first step is to gener-
ate artificial faults, which are called mutants. Each mutant differs from the original
system in only one small syntactical change. Mutants are generated systematically
and automatically using mutation operators, which represent standard types of mu-
tations and apply these changes at all possible locations in the source code. Many
different mutation operators have been proposed in the literature for various differ-
ent programming languages, and a convention is to give these operators three-letter
acronyms. Figure 7 shows an example mutant for the power function of Figure 1 in
detail; this mutant is the result of applying the COR (Conditional Operator Replace-
ment) mutation operator to line number four of the original version of the program.

Once a collection of mutants has been produced, every test in the test suite under
evaluation (i.e., both tests in Figure 6) is executed on the original system and on
each of the mutants. Since a prerequisite for mutation analysis is that all tests pass
on the original program, a mutant is “killed” when the test suite contains at least
one test that fails when executed on the mutant. To inform the testing process, the
mutation score is computed to indicate how many of the mutants can be detected
(read killed) by the test suite. While a mutant that is killed may increase confidence
in the test suite and increase the mutation score, the true value may lie in the live
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1 int power(int b, int e){
2 if (e < 0)
3 throw new Exception("Negative exponent");
4 if ((true) && (e == 0))
5 throw new Exception("Undefined");
6 int r = 1;
7 while (e > 0){
8 r = r * b;
9 e = e - 1;

10 }
11 return r;
12 }

Fig. 7: Mutant for the power function, result of applying the COR operator to line
number 4.

mutants, i.e., those that were not detected by any test: Live mutants can guide the
developers towards insufficiently tested parts of the system.

Depending on the number of mutation operators applied and the program under
test, the number of mutants generated can be substantial, making mutation analy-
sis a computationally expensive process. Several different optimizations have been
proposed in order to reduce the computational costs, and Offutt and Untch (2001)
nicely summarize some of the main ideas. For example, rather than compiling each
mutant individually to a distinct binary, meta-mutants (Untch et al, 1993) merge
all mutants into a single program, where individual mutants can be activated/de-
activated programmatically; as a result, compilation only needs to be done once.
Selective mutation is a further optimization, where the insight that many mutants
are killed by the same tests is used to reduce the number of mutants that is consid-
ered, either by randomly sampling mutants, or by using fewer mutation operators. In
particular, work has been done to determine which operators are sufficient, such that
if all the resulting mutants are killed, then also (almost) all mutants of the remaining
operators are killed (Offutt et al, 1993).

A limitation of mutation testing lies in the existence of equivalent mutants. A mu-
tant is equivalent when, although syntactically different, it is semantically equivalent
to the original program. The problem of determining if a mutant is equivalent or not
is undecidable in general, hence, human effort is needed to decide when a mutant is
equivalent and should not be considered or when a mutant is actually not equivalent
and a test should be created to detect it. It is commonly assumed that equivalent
mutants are among the reasons why mutation testing has not been adopted by most
practitioners yet. Figure 8 presents an example of equivalent mutant for the power
function. The mutation applied is the ROR (Relational Operator Replacement) oper-
ator; the condition of the while loop is changed from > to !=. The resulting mutant
is equivalent because the evaluations of e>0 and e!=0 are identical, given that the
first if condition already handles the case e<0, and therefore e will never be less
than 0 when the mutated expression is evaluated.
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1 int power(int b, int e){
2 if (e < 0)
3 throw new Exception("Negative exponent");
4 if ((b == 0) && (e == 0))
5 throw new Exception("Undefined");
6 int r = 1;
7 while (e != 0){
8 r = r * b;
9 e = e - 1;

10 }
11 return r;
12 }

Fig. 8: Equivalent mutant for the power function, result of applying ROR to line
number four.

Two theoretical assumptions are the foundation of mutation testing: the coupling
effect and the competent programmer hypothesis. The coupling effect states that
small faults are coupled with more complex ones. The implications of this assump-
tion is that by explicitly testing for simple faults, mutation testing implicitly tackles
more complex ones as well. Furthermore, according to the competent programmer
hypothesis, software developers tend to write almost-correct programs, i.e., pro-
grams whose faults are due to small syntactical mistakes, which can in practice be
simulated during mutation testing. There are two influential empirical studies sug-
gesting that mutants are indeed coupled and thus representative of real faults: The
first one is by Andrews et al (2005), and more recently Just et al (2014) empirically
validated the coupling effect by showing that a strong correlation exists between
mutant detection and real fault detection. There is now a substantial body of lit-
erature on mutation testing, which has been comprehensively surveyed by Jia and
Harman (2011).

3.1.5 Coverage Criteria for Concurrent Programs

With the increasing use of multi-core architectures, software is increasingly making
use of concurrency features of modern programming languages. While the testing
concepts discussed so far all also apply to concurrent programs, the concurrency
provides an additional source of errors, and thus requires dedicated testing effort. In
particular, errors arise if multiple parallel threads or processes access some shared
memory, then a common problem lies in race conditions: If one process writes to
a shared variable and another process reads the shared variable, then depending on
how the operating system schedules the processes the order of the read and write
operation may change, and with it, the result of the program execution. Similarly,
atomicity violations, where a critical section that needs to be protected is interrupted
by the thread scheduler, may cause a program to behave incorrectly. To avoid such
sources of errors, various protection mechanisms such as locks have been devised.
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A lock protects a critical section, and only one process at a time can access it while
all others need to wait for the lock to be released. This, however, offers additional
sources of errors. For example, a process may request to access a critical section but
never receive the lock, in which it starves. If two processes acquire two different
locks but then get stuck waiting for the lock held by the other process, the program
is in a deadlock.

These and other types of concurrency issues are difficult to test for, since the in-
terleaving of processes is difficult to control, and the number of possible interleav-
ings in practice can be huge. However, Lu et al (2008) analyzed 105 concurrency
bugs in open source applications, and found that, despite the large number of possi-
ble memory accesses and interleavings, in practice errors manifest with only small
numbers of accesses and interleavings. For example, 96% of the examined concur-
rency bugs analyzed by Lu et al (2008) manifested if a certain partial order between
only two threads was enforced. Similarly, 92% of the examined concurrency bugs
were guaranteed to manifest if a certain partial order among no more than four
memory accesses is enforced, and 97% of the examined deadlock bugs involved at
most two variables. Since it is feasible to find many concurrency issues by covering
combinations of low numbers of memory access points, processes, and variables,
several coverage criteria have been devised specifically for concurrent programs.

While Yang et al (1998) showed that the all-definition-use pair coverage can be
adapted to explore shared data accesses, there are also more targeted coverage cri-
teria. In particular, synchronization coverage (Bron et al, 2005) was designed with
the aim of being as easy to understand and actionable as statement coverage is in for
sequential programs. The coverage criterion requires that for each synchronization
statement in the program (e.g., synchronized blocks, wait(), notify(), notifyAll() of
an object instance) there exists at least one test where a thread is blocked from pro-
gressing, and at least one where a thread is allowed to continue. Lu et al (2007)
defined a hierarchy of more rigorous criteria that also consider shared data accesses
that are not guarded by synchronization statements. For example, all-interleaving
coverage requires that all feasible interleavings of shared access from all threads
are covered. Thread pair interleaving coverage requires, for a pair of threads, that
all feasible interleavings are covered. Single variable interleaving coverage requires
that for one variable all accesses from any pair of threads are covered. Finally, partial
interleaving requires either coverage of definition-use pairs, or consecutive execu-
tion of pairs of access points. Since many of these criteria are either too weak or too
complex to be of practical value in a testing context, Steenbuck and Fraser (2013)
defined concurrency coverage, which requires covering all possible schedules for
sets of threads, variables, and synchronization points, for a parameterized degree of
synchronization points, variables, and threads.

3.1.6 Coverage Criteria for Graphical User Interfaces

While many adequacy criteria are defined on the program’s source code, the source
code often cannot capture program behavior at higher levels of abstraction. When
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programs have graphical user interfaces (GUIs), then these can be used to capture
such aspects. In particular, GUIs consist of different types of user interface ele-
ments, i.e., widgets, and users interact with these widgets (e.g., by clicking buttons
or entering text). Interactions with the program thus consist of sequences of such
interactions, and it is possible to test programs with such sequences of interactions.
This idea is captured by the concept of GUI testing, where such sequences are used
as tests.

The adequacy of test sets consisting of sequences of GUI events can be captured
in models of the user interface. Memon et al (2001) introduced the notion of an event
flow graph (EFG). The EFG of a GUI component defines the relation between differ-
ent interactions, such that nodes of the graph represent events, and edges between
nodes represent dependencies. For example, a menu-open event for menu File
would have an edge to the system-interaction events Open or Save, which are pos-
sible events that follow from opening the menu. The example user interface shown
in the system testing level of Figure 2 would contain system interaction events for
the buttons power, plus, minus, mul, and calculate, and an event for setting the text
of the text field. Based on this graph, different types of coverage criteria can be de-
fined. For example, event coverage would require that each event is included in at
least one test case, and event-interaction coverage would require that all possible
pairs of events that can be executed in sequence are covered. Since some events are
related by the modal windows they are contained in, criteria like invocation cover-
age require that events opening and closing components (e.g., opening and closing a
dialog window) are covered. Covering individual events or pairs of events provides
a basic notion of coverage, but ideally one would want to cover longer sequences
of events. However, since the number of possible event sequences quickly explodes
when considering more than pairs of events, Yuan et al (2011) applied ideas from
combinatorial interaction testing (see Section 3.3.1) to identify relevant subsets. In
contrast to the more basic criteria defined earlier (Memon et al, 2001), the criteria
based on combinatorial interaction testing allow for combinations of any strength,
and consider the sequential ordering of events (i.e., not only all combinations, but
also their orderings are considered).

3.2 Generating Tests

Manually generating tests can be a tedious process, and considering the importance
of a strong test suite, researchers have long sought to support testers by generating
tests automatically. In many cases, automated generation only considers test data,
that is, the input data to the system that satisfies a chosen adequacy criterion. De-
termining whether the tests reveal errors is then deferred to test oracles that have to
be added by the testers manually. Figure 9 gives a structural overview of the work
covered in this section.
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Fig. 9: Generating Tests: Genealogy Tree

3.2.1 Random Testing

Technically, random testing is maybe the simplest test generation technique one
could think of: Given the input domain of a program, test data is generated by ran-
domly sampling data points. This is convenient for an engineer who implements
the test generation system, as the technical challenges are limited. This is also con-
venient for a tester, as the test generator requires no further information besides a
definition of the program’s input space. However, as with any form of random sam-
pling, the number of samples typically has to be substantial, and so one typically
assumes that there is an automated test oracle to make random testing possible.

While more systematic approaches, like discussed in the subsequence sections,
are expected to require fewer tests, there is an often overlooked fundamental dif-
ference between random and systematic testing: Systematic test generation may use
knowledge about the program in order to select tests likely to expose faults, but only
random testing allows derivation of conclusions about the reliability of a system
under test. In particular, Hamlet’s entry on random testing in the Encyclopedia of
Software Engineering (Hamlet, 1994) describes the underlying assumptions: Given
an operational profile, i.e., a distribution describing user inputs, random testing can
be used to calculate reliability properties such as the mean time to failure.

When the aim is not to gain confidence, but to find faults, then random testing
can be improved in several ways. A popular version of random testing is adaptive
random testing (ART), as proposed by Chen et al (2004): Whereas standard random
testing samples input values using an underlying distribution (e.g., a uniform distri-
bution or an operational profile) the idea of ART is to maximize the diversity of the
sampled values. Given a random sample, the next test to execute is selected such
that it is as different as possible from the previous one; then the next one is selected
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such that it is as different as possible from the previous two, and so on. An easy way
to achieve this is to uniformly sample a number of test inputs, and then to select
the best one out of the sampled values (e.g., using Euclidian distance if inputs are
numeric). For example, consider we started creating a random set of tests T with a
single random input T = {(3,8)}. To select the next text, with ART we would first
create a set of candidate random inputs, e.g.:

t1 = (10,0)
t2 = (−20,4)
t3 = (7,29)

For each of these candidate tests, the distance to the original test t would be
calculated, for example, using the Euclidean distance:

d(t, t1) =
√
(3−10)2 +(8−0)2 = 10.63

d(t, t2) = 23.35
d(t, t3) = 21.38

Since the distance to t2 is largest, this would be the selected test, resulting in
T = {(3,8),(−20,4)}. To select a further test input, again a set of candidate inputs
would be generated randomly. Then, for each of the candidate inputs the minimum
distance to any test in T is calculated, and the test that is furthest away from all tests
in T is then selected as the next test; and so on.

A range of studies building on the work of Chen et al (2004) have shown that
ART produces tests that are more effective at detecting faults. However, this ap-
proach loses the advantages of being able to estimate reliability. Furthermore, as
Arcuri and Briand (2011) showed, it only improves over random testing if there is
a cost to the number of tests (e.g., by requiring a manual test oracle), as otherwise
the time spent on selecting tests could be more effectively used to execute random
tests. In particular, with increasing numbers of tests selected, calculating the dis-
tance quickly becomes more computationally expensive.

A further way to improve the effectiveness of random testing lies in the idea of
interleaving test execution and random sampling. This is particularly useful when
test inputs are not just basic primitive values, but are incrementally extended. For
example, Pacheco et al (2007) describe what they call “feedback-directed random
testing”, where sequences of API calls are generated by incrementally extending
and executing sequences. As some sequences of calls are better suited to be ex-
tended than others, the results of the execution are considered. Those resulting in
exceptional behavior are not extended, whereas sequences that represent regular be-
havior are candidates for extension. Again, this increases effectiveness, but at the
price of losing confidence.
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3.3 Fuzz Testing

A popular, and maybe even the most popular, application of random testing lies
in fuzz testing. The idea of fuzz testing goes back to Miller et al (1990), who dis-
covered that sending random characters as input to unix command-line utilities can
reveal program crashes. Fuzz testing has many applications, and it is particularly
used in security related domains, where discovering exploitable faults is a main
concern (Sutton et al, 2007).

Whereas Miller et al (1990) applied fuzz testing to simple programs receiving
raw textual input, programs often require more complex, structured input (e.g., pro-
gram code). A common approach to fuzz testing in this case lies in randomly modi-
fying well-formed inputs and using the resulting variants as tests (Sirer and Bershad,
1999; Forrester and Miller, 2000).

Alternatively, when the complex input format is described with a grammar, this
grammar can be used to synthesize valid input. Grammar based testing has been
used since the early 1970s for testing compilers and interpreters (Hanford, 1970;
Bird and Munoz, 1983), and now is used for fuzzing complex data. For example,
Microsoft’s SAGE tool (Godefroid et al, 2008a) is reported to have saved the com-
pany millions of dollars’ worth of software bugs.

In their series of studies on fuzz testing, Miller’s group also explored testing of
applications that rely on user interactions (Forrester and Miller, 2000). Here, fuzzing
consists of sending random events (mouse events, keyboard events). This is now a
common approach to testing applications with GUIs, i.e., GUI testing. Since the
interactions with the program resemble those of a monkey hitting a keyboard and
a mouse, this type of testing is sometimes also referred to as monkey testing. A hot
topic in the testing research field is GUI testing of Android apps, with the aim to
find app crashes. Interestingly, the simple “monkey” tool, which is included in the
Android development kit and naively sends random interactions at random screen
positions, is still amongst the most effective automated testing tools for Android
apps (Choudhary et al, 2015).

3.3.1 Black-box Techniques

As already indicated in the previous section on random testing, there is a long-
standing debate on whether or not random testing is preferable to more systematic
approaches. However, in practice the number of tests often is a major concern, in
particular when the test oracle needs to be provided by a human, but also when test
execution itself is expensive. Furthermore, often the objective of testing is not to
increase confidence, but to find faults. In these cases, more systematic approaches
may be more successful. For a detailed discussion of the ongoing debate, the reader
may consult the comparisons by Gutjahr (1999); Duran and Ntafos (1984); Hamlet
and Taylor (1990). The main baseline against which random testing is compared in
these works is partition testing, and this is also what we consider first in this sec-
tion. However, since the start of the random-vs.-systematic debate, other alternative
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Fig. 10: Partitions with boundary values for the exponent of the power function.

approaches have been presented, and in particular combinatorial testing techniques
have recently gained momentum. To round off this section, we will finally also con-
sider specification- and model-based testing techniques as well as metamorphic test-
ing, which covers the spectrum of black-box testing techniques.

Partition testing

In their discussion of test adequacy, Goodenough and Gerhart (1975) describe the
idea that the input space of a program can be partitioned into equivalence classes,
such that for each class choosing any test input will test the entire class. This is
known as equivalence partitioning, and a common assumption is that there is a
specification from which these equivalence classes, or partitions, can be derived. For
example, if we consider once again to be testing a power function implementation,
then the specification tells us that the behavior for negative exponents is different
from positive exponents, but it is the same for all positive exponents, and the same
for all negative exponents. Thus we can, for example, define one input partition for
negative exponents, and one for exponents greater or equal to 0.

Partitions can, in principle, also be based on source code information, as for ex-
ample described by White and Cohen (1980) in their work on domain testing. Of
particular interest in this article is the insight that the choice of any value within an
equivalence partition is sufficient to detect if the implementation of the functional-
ity represented by this domain contains errors, but it is not sufficient to determine
whether the domain itself has been implemented correctly – that is, a representative
value from inside the partition will not detect domain errors.

To avoid this problem, it is important to choose values that are at the boundaries
of the domains (White and Cohen, 1980), an approach known as boundary value
analysis. There are various interpretations of which boundary values to choose.
Given a numerical domain A ≤ x ≤ B, a typical choice would include a value on
the lower boundary of the domain (A), at the upper boundary of the domain (B),
and a representative value from inside the partition (A < x < B). Furthermore, one
would typically also include negative examples; i.e., input values on the other side
of the boundaries (A− 1, B+ 1). In the example of our power function program,
we selected two partitions for the exponent above (negative exponents and expo-
nents greater or equal to 0). Figure 10 illustrates these two partitions, where -1 and
0 are the boundary values, and we selected -10 and +10 as representative values
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from within the partitions. Indeed, the implementation for the value 0 has special
conditions for this case.

This leaves two main challenges in boundary value testing: The first one is deriv-
ing the equivalence classes in the first place, and the second one lies in combining
values if there are multiple input parameters for a program. For example, in the
power program we have input partitions [MIN,−1], 0, [1,MAX ] for parameter b
and e. Boundary values are at MIN, −1, 0, 1, MAX , and we might choose to also
include some representative values from the middle of the domains, e.g.,−100, 100.
This means we have 7 values for each of the two parameters, and thus 49 combina-
tions.

To overcome these issues, Ostrand and Balcer (1988) introduced the category-
partition method, a systematic approach that guides a tester to derive a set of test
frames, that is, value assignments to the inputs of the system under test, from the
specification of the system. The first step is to identify individual functional units
of the system. For each of these functional units, the characteristics of their param-
eters are analyzed in order to define categories. For each category, the main choices
(partitions) are then selected. As the approach is based on a systematic combination
of all possible choices for the different parameters and categories, a central aspect
of the approach is to restrict possible combinations by defining constraints between
choices. For example, a particular choice for one category might lead to an error
condition irrespectively of the choices for other categories, and so it is not neces-
sary to build all combinations. A particularly nice aspect of the category-partition
method is that the test frames can be generated automatically. However, for each
test frame a test oracle is still required, which most likely is provided manually.
This makes the definition of good constraints a central important aspect.

For example, when applying the category partition method to the power func-
tion, we might identify the same three partitions as well as 7 representative values
for each of the inputs as described above. Ostrand and Balcer (1988) used the “Test
Specification Language” (TSL) to express these values, which results in a specifica-
tion as follows:

Parameter e:
MIN.
-100.
-1.
0.
1.
100.
MAX.

Parameter b:
MIN.
-100.
-1.
0.
1.
100.
MAX.
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The TSL specification serves as input to automated tools such as TSLGenerator5,
which re-implements the original implementation by Ostrand and Balcer (1988).
TSLGenerator will create test frames representing all combinations of different val-
ues. In this case, this results in 7×7 = 49 test frames, each selecting a combination
of the values for e and b (e.g., (MIN, -100).

We can add further constraints to reduce the number of combinations. For exam-
ple, we would declare error cases for e for all three values less than 0, which in TSL
is done by adding a [error] clause. The partition denoted as “error” partition will
not be combined with other values, but results in a single test frame consisting of
only the error value. Under the assumption that the other values do not influence
the error case, it is then the tester’s choice which other values to combine with this.
We might further make the decision to only combine e = 0 with b = 0, which can
be done by declaring a property on one partition, and adding a constraint with
an if condition on the other. Finally, we could avoid exhaustively combining all
extreme values (maximum, minimum) as well as the value 1 by declaring them as
single values. Similarly to the error cases, single values are only included
in a single combination where the choice of other values is up to the tester. Applying
these constraints results in the following TSL specification:

Parameter e:
MIN. [error]
-100. [error]
-1. [error]
0. [property e0]
1. [single]
100.
MAX. [single]

Parameter b:
MIN. [single]
-100.
-1.
0. [if e0]
1. [single]
100.
MAX. [single]

This, overall, reduces the number of combinations from 49 to 15, in this example:

Test Case 1 <error>
Parameter e : MIN

...

Test Case 4 <single>
Parameter e : 1

...

Test Case 9 (Key = 4.2.)
Parameter e : 0
Parameter b : -100

Test Case 10 (Key = 4.3.)

5 TSL generator for the Category Partition Method. https://github.com/alexorso/tslgenerator. Ac-
cessed February 2017.

https://github.com/alexorso/tslgenerator
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Parameter e : 0
Parameter b : -1

...

Combinatorial interaction testing

Combinatorial explosion means that testing systems with many parameters and
categories is a real challenge, even when applying systematic approaches like the
category-partition method. The example of the power function illustrated that even
simple programs can result in many different combinations. Often, the number of
parameters is larger than that, and environmental factors have a further influence.
For example, our power function might be compiled on different target platforms
with different maximum values (e.g., 16, 32, 64 bit platforms), and just by adding
that parameter the total number of possible combinations increases from 49 to 147.
It is easy to see how this number can further increase. An illustrative example is that
of a standard desktop application which has a properties dialog with many individ-
ual options (e.g., think of the Microsoft Word options dialog). Any test generated
for Word would, in theory, need to be executed on all exhaustively possible combi-
nations of these options.

An important insight has shaped research on testing methods in the light of the
combinatorial problem: In most cases it is not necessary to test all combinations, as
errors are often exposed by a combination of only a few of the parameters. Kuhn
et al (2004) report empirical data on this phenomenon; for example, just looking at
all pairwise combinations of parameter values is already sufficient to detect 77% of
the faults reported for the considered real software systems.

For example, assume we want to test our power function on different operating
systems (Windows, Mac, Linux), each with 32 bit and 64 bit versions, and for b and
e three partitions each (< 0, 0, > 0). In total, this would give us 54 combinations.
However, if only considering pairwise combinations, we can get a much smaller test
set, as shown in Table 2. In this table, for example, each value of the “Windows” op-
erating system is combined with all possible values for platform, b, and e; the same
holds for all other pairwise combinations. In total, only 9 test cases are necessary in
order to cover all pairwise combinations.

The challenge for the tester lies in deriving the smallest possible set of tests that
covers all combinations of a chosen order (e.g., all pairs). This is a well-known
problem in mathematics, where the test sets can be represented as orthogonal ar-
rays. However, orthogonal arrays have some limitations, for example as they require
all parameters to have the same number of values. Furthermore, in practice not all
combinations of values are possible, and there are often constraints between dif-
ferent values. To address these problems, a large number of techniques have been
proposed over the years, and a particularly influential approach is the AETG (Au-
tomatic Efficient Test Generation) system introduced by Cohen et al (1996, 1997),
which uses a greedy heuristic to generate combinatorial test suites. AETG is a base-
line in the literature on combinatorial testing to the present day, with new techniques
striving to reduce the number of tests necessary to cover all the required combina-
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Table 2: Pairwise test suite for the power function example.

OS Platform b e

Windows 64bit < 0 0
Windows 32bit 0 > 0
Windows 64bit > 0 < 0
Mac 32bit < 0 > 0
Mac 64bit 0 < 0
Mac 32bit > 0 0
Linux 32bit < 0 < 0
Linux 64bit 0 0
Linux 64bit > 0 > 0

tions. There are two survey papers in the field that provide further insights: Grindal
et al (2005) provide an overview over 16 different combination strategies, and a
more recent survey by Nie and Leung (2011) categorises all the work in the area up
to 2011.

Model-based testing

The black-box approaches discussed so far require some specification of the inputs
and their constraints. The more aspects of the system are specified, the more guid-
ance we have in generating functional tests. In particular, if the behavior is specified
in a formal way – that is, if it is written with some notation that is machine-readable
and has defined semantics – then test generation can be automated. This idea is
what inspired model-based testing: A model of the system is a kind of specifica-
tion, which models some aspect of its behavior in a simplified, abstract way (e.g.,
Chow (1978)). The underlying assumption is that it is easier to specify the functional
behavior in a model, where the implementation details of the system are abstracted
away. Given such a model, we can then automatically derive tests. Even better, given
such a model, we can compare whether the response of the system under test to the
test inputs matches the behavior described in the model. In other words, if we have
a test model, we can automate test generation and the test oracle.

As the test model is usually more abstract than the implementation, actions in the
model may not directly map to actions in the system; instead, the abstract actions
need to be refined to real inputs on the system. Similarly, the concrete response of the
system needs to be abstracted again to compare it to the abstract model response.
Thus, the main components of a model-based testing system are (1) a model of
the system, (2) an algorithm to derive tests from the model, (3) a test driver that
refines model inputs to concrete system inputs, and (4) a test oracle that compares
the concrete system response with the abstract model response.

The test driver and oracle by definition have to be specific to the system under
test. However, the model formalism and test generation algorithm are generic. There
is a wide spectrum of different formalisms to model program behavior, and each
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type of formalism has its own techniques to generate tests. A popular and intuitive
way to model system behavior is using finite state machines.

S1 S2 S3

Digit/
Display

Pow/
Clear

Digit/
Display

Digit/
Display

S4

Result/
ShowRes

Fig. 11: Finite state machine of a calculator program

A finite state machine is a model that consists of states and transitions between
these states. For example, assume the power function (Figure 1) is integrated into
a calculator (as shown in Figure 2). When turning the calculator on, one can enter a
number by repeatedly pressing a number of digits; once all digits of the first num-
ber have been entered the user presses the “Pow” button, and then enters the digits
of the second number. Finally, to calculate the result the user enters the “Result”
button. There are four states in this program: First there is the initial state, where
the calculator has been switched on but no buttons have been pressed. Then, while
entering the digits for the first number the program is in the second state. The third
state is where the user enters the digits of the second number, and finally the fourth
state is the result state. The transitions between each of these states are triggered
by user inputs: One gets from initial state to the state of entering digits by pressing
a digit button. One gets to entering the second number by pressing the “Pow” but-
ton. Finally, the result state is reached by pressing the “Result” button. This defines
the states and transitions of our state machine, and these are typically shown in a
graphical notation, where circles represent states and arrows between the circles are
transitions, as shown in Figure 11. Mathematically, a basic finite state machine is
defined as a tuple (S,s0,T ), where S is a set of states, s0 ⊂ S is a set of initial states,
and T = S× S is a transition relation. Many programs may have only one initial
state when the program is launched, but it is also common that programs persist
some user information and start into different initial states.

To make use of a finite state machine for testing, we need to capture input/output
behavior of the underlying program in the model. In most cases, each transition is
associated with an input that triggers the transition. In our example, the input events
are thus Digit, Pow, and Result. In order to do any sensible testing, we also need the
state machine to describe outputs. One way to achieve this is to also associate an
output with each transition; resulting state machines are known as Mealy machines.
Mathematically, we add an input alphabet I, such that T = S× I→ S. An alternative
is to associate outputs O with states, in which case the state machines are called
Moore machines (O= S→O). Moore machines are usually more common to model
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hardware systems than software systems, although both are possible. Finally, an
alternative is to associate each transition with either an input or an output; this is
called a labelled transition system. In Figure 11, each transition is labelled with a
pair of values, separated with a ’/’ symbol; this is a common notation to separate
input/output. For example, on pressing the power button (input “Pow”) the system
responds by clearing the display (output “Clear”).

Given a state machine model with inputs and outputs, the general principle of
testing consists of selecting sequences of inputs from the model, applying them to
the implementation, and comparing the outputs of the implementation to those of
the model. If there are differences between the observed and modeled outputs, then
a bug has been found. Note that although this usually is a bug in the implementation,
in theory this can also be an error in the model itself. There are different strategies
to select sequences of inputs from a model. The most basic strategy, again, is to
do so randomly: Starting at the initial state of the model one picks any outgoing
transition from that state; then in the target state, this is repeated. One can either
derive complete sequences from the model and then execute them as a whole, which
is known as offline testing. On the other hand, one can interleave the selection of
transitions with execution, as for example done in the TorX tool (Tretmans and
Brinksma, 2003), an example of online testing. Indeed, there are many nuances
to model-based testing strategies, some of them obvious and some of them less
obvious. The many different dimensions of model-based testing are well captured
in the taxonomy of Utting et al (2012).

In practice, many techniques are based on covering all aspects of a state machine
model. For example, Offutt and Abdurazik (1999) generate tests from UML state
machines with the objective to satisfy different coverage criteria such as state cov-
erage, transition coverage, or transition-pair coverage. This is also well captured in
the seminal book on model based testing by Utting and Legeard (2010). A particu-
larly popular application of model-based testing currently lies in GUI testing, where
models represent states and transitions of an application’s user interface (Memon
et al, 2001). In particular, several Android-based approaches (Choudhary et al, 2015)
make use of some sort of GUI model. It is likely that this approach to model-based
testing owes some of its popularity to the fact that the models can be automatically
generated using a process called “GUI ripping” (Memon et al, 2003b). In GUI rip-
ping, the user interface of an application is explored automatically, and a model of
the application’s user interface is created on-the-fly, during this exploration. This
model can then be used to further drive test generation. While the need to manually
create a model is removed this way, one loses the advantage of using the model as
an automated test oracle. In theory, this means a human test oracle is required; in
practice (Choudhary et al, 2015), it means that many model-based GUI testing tools
primarily try to find program crashes, which are always undesired.
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Fig. 12: Output error in the finite state machine of a calculator program
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Fig. 13: Transfer error in the finite state machine of a calculator program

Conformance Testing

Many different systematic techniques have been proposed in order to detect all mis-
matches between an implementation and a model; many of these are summarized in
detail in the survey of Lee and Yannakakis (1996). While it is accepted that software
testing cannot make any guarantees about program correctness or the absence of er-
rors, the availability of a formal model (e.g., a state machine based model) does al-
low to draw conclusions about correctness under certain assumptions. In particular,
there are different approaches with which to decide whether an implementation con-
forms to the model, i.e., if the behavior of the implementation matches the modelled
behavior, and does not have certain types of faults. This is known as conformance
testing.

There are two main ways in which an implementation can mismatch a state ma-
chine model: On one hand, the implementation may make a transition to the correct
state but while doing so produce a wrong output; this is called an output fault (Fig-
ure 12). On the other hand, the implementation may take a transition to the wrong
state – even if the expected output is produced; this is known as a transfer fault
(Figure 13). While an output fault would be immediately detected by comparing
expected and observed output, a transfer fault may only be detected later on, af-
ter further inputs have been sent to the implementation. Besides these two types of
faults, an implementation may also miss states entirely, or implement extra states
that are not part of the specification.
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Viewed at a high level, most conformance testing techniques consist of the fol-
lowing steps. For each state S and for each input I for which an outgoing transition
from S exists:

1. Reset implementation to initial state
2. Go to state S
3. Apply input I
4. Check output
5. Verify target state

This algorithm is simple to implement if one has a direct way to query the state of the
implementation and to reset it; it becomes trickier when one has to do either of these
things by applying longer sequences of inputs. For example, a unique input/output
(UIO) sequence is a sequence of inputs that distinguishes each state from all other
states (Sabnani and Dahbura, 1988). However, this does not always exist.
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Fig. 14: Complete version of the example FSM: In every state, there is a transition
for every input of the alphabet.

In contrast, it is always possible to generate a set of sequences that can distin-
guish any pair of states in a state machine, if one assumes that the state machine
is reduced (i.e., the number of states is less than or equal to any other equivalent
state machine, where two state machines are equivalent if they produce the same
sequence of outputs for every possible sequence of inputs). Such a set of sequences
is called a characterizing set, or W -set, and was derived in the seminal article by
Chow (1978). The W -method of testing with final state machines further assumes
that the state machine and its implementation are completely specified, i.e., from
each state there exists a transition for each possible input. Our original FSM (Fig-
ure 14) satisfies neither of these properties, but it is easy to derive a minimal and
complete version by merging equivalent states (S1, S4) and adding transitions for
all labels to each state. The result is shown in Figure 14.

Chow’s W -method consists of generating such a W -set as well as a transi-
tion cover P, i.e., a set of sequences that reaches all states. In our example, the
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set W is W = {Pow,Result}, as these two events lead to a different output for
all pairs of states in the minimal FSM. A transition cover P would consist of
{ε,Pow,Result,Digit ·Digit,Digit ·Result,Digit ·Pow ·Digit,Digit ·Pow ·Pow,Digit ·
Pow ·Result}; that is, there is a sequence for each transition (including ε , which is
the initializing transition leading to S1). Finally, the overall test set is constructed by
using P to reach each state, and in each state to apply W to check the conformance
of the implementation for that state, which gives us 18 tests.

The W -method has since then been refined for different purposes, and of par-
ticular relevance is the Wp-method (partial W method, by Fujiwara et al (1991),
which generally produces smaller test sets. While these approaches aim for com-
pleteness, i.e., they find all the conformance errors, the assumptions made by such
approaches may in practice not hold. An alternative approach lies in defining con-
formance over less restricted labelled transition systems (LTS), which are typically
non-deterministic and allow for quiescence (quiet state transitions in the system),
thus making the notion of conformance less obvious. The seminal work in this area
is Tretmans’s ioco conformance (input/output conformance) relation (Tretmans,
1996). An alternative approach lies in exhaustively checking models, i.e., model
checking (Clarke et al, 1999). While model checking is not a testing technique per
se (model checking aims to determine if models satisfy or violate given properties),
there is a middle ground between testing and model checking. By interpreting a pro-
gram as a model of its possible executions, it is possible to apply model checking
techniques directly to programs (e.g., (Holzmann and H Smith, 2001; Visser et al,
2003)). Visser et al (2004) formulate test generation as a model checking problem
and leverage symbolic execution to generate tests that satisfy or violate program
properties specified as input pre-conditions. Model checkers have also been used as
tools to implement model-based testing techniques. For example, given a state-based
model, it is possible to use the counterexample facility of standard model checkers
(e.g., SPIN (Holzmann, 1997) or SMV (McMillan, 1993)) in order to select individ-
ual test cases (Fraser et al, 2009); in this approach, coverage goals are represented
as negated properties, and then a counterexample to such a negated property (trap
property) represents a test that satisfies the coverage goal.

Metamorphic testing

One of the advantages of model-based testing over other testing techniques is the
full automation it provides: We can generate test inputs from the model, and we
can compare the resulting program behavior with the behavior described by the
model to automatically decide when a test failed. Some automated techniques do
not even require full models, but work by exploring whether the system under test
exposes properties that formalize only part of the overall behavior; for example, the
QuickCheck tool (Claessen and Hughes, 2011) is an example of such a tool, and
is very popular in the Haskell community. When no specifications or models are
available, the decision of whether a system response is correct needs to be made by
a human. Making this decision, as well as creating precise models or specifications,
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can be challenging. However, even when it is difficult to predict the specific output
of a program for a specific input, it is sometimes possible to predict how the system
response will change after a change to that input. This insight is underlying the idea
of metamorphic testing, initially proposed by Chen et al (1998).

The prototypical example used in the literature on metamorphic testing is that
of an implementation of a sine function. Without an alternative implementation it
is difficult to predict the exact output of the function for a specific number, e.g.
sin(17), and even when seeing the resulting output value it is difficult to judge
whether the implementation is correct. However, from mathematics we know that
sin(x) = sin(π− x). The idea of metamorphic testing is to use an existing test, such
as sin(17), and to derive a follow-up test sin(π − 17), and then without knowing
the concrete values of the computation we can still check if the two outputs are the
same. If they are not, then we know that there is an error in the implementation of
the sin program.

Considering out example power function (Figure 1), a possible metamorphic
property we might come up with is that x to the power y is the same as x to the
power of y−1 times x:

power(x,y) = x× power(x,y−1)

Given any test case for power, for example t1 = power(10,3), we can create a
follow-up test t2 = power(10,2), and check that t1 = 10× t2. The nice thing is that
given such a property, testing becomes fully automated again: We can generate any
number of test inputs for power, and by generating a follow-up test for each of them
we can check the correctness automatically.

At first it might seem that metamorphic testing is a technique specific for numeric
programs; however, metamorphic testing applies to a wide range of application do-
mains. Segura et al (2016) provide an extensive survey including applications, which
covers web services and applications, computer graphics, simulation and modelling,
and embedded systems.

3.3.2 White-box Techniques

White-box testing in general refers to any testing techniques that consider the source
code of the program. Often, these techniques are also known as structural testing
techniques because they are guided by the structure of the program code. In practice,
the world is not black and white – for example, one can use a black-box testing
technique to select tests and measure their code coverage at the same time. In this
chapter, however, we will focus on techniques that consider only the source code.
When testing guided by a program’s source code, the aim of test generation often
reduces to the task of reaching a certain point in a program, or following a certain
execution path through the program. This could be, for example, in order to satisfy
a coverage objective, such as covering all statements of the program.
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Search-based testing

Search algorithms are at the core of computer science, but searching for program
inputs is not straightforward as the number of inputs for any real program is far
too high to explicitly enumerate them all. Consequently, the search for tests needs
to be informed by heuristics and needs to use algorithms that can cope with the
complex structure and properties of test data. The earliest known publication on
search-based testing dates back to 1976: Miller and Spooner (1976) reformulated
paths as straight-line programs, where constraints were dynamically solved through
numerical maximization techniques. Tests were executed, and these executions were
guided towards the required test data using a fitness function, which rewarded in-
puts that are close to the target test data. Since then, many different heuristics and
algorithms have been proposed. As these are generic search algorithms that can be
adapted to different problems by supplying a heuristic, they are often referred to as
“meta-heuristic” search algorithms.

Search-based testing is a part of a larger movement in software engineering,
where meta-heuristic search algorithms are used to solve complex software engi-
neering problems. This field dates back to Miller and Spooner’s early work on test
data generation, but saw a large surge in popularity much later, around the time the
term ’search-based software engineering’ (SBSE) was coined by Harman and Jones
(2001a). Search-based testing covers everything in SBSE related to testing, which
ranges from functional testing (Bühler and Wegener, 2008) to test prioritization (Li
et al, 2007a), test selection (Yoo and Harman, 2007), combinatorial interaction test-
ing (Cohen et al, 2003), to model-based testing (Derderian et al, 2006) and many
others. A good overview of the field and a useful introduction to search-based testing
in general is provided by McMinn’s survey (McMinn, 2004); a more recent snapshot
of the literature is provided by Ali et al (2010). In this section, we are focusing on
structural test data generation, which is why it is included as white-box technique,
even if there are also search-based black-box testing approaches.

There are some choices to be made when generating test data for structural test-
ing: First, one needs to select a meta-heuristic search algorithm. Second, one needs
to find a suitable representation that encodes test data (i.e., program inputs, se-
quences of calls, etc.) in a suitable way for that search algorithm. This means that the
operators used by the search algorithm (e.g., to explore the neighbours of a given
candidate solution in the search space) need to be defined for that representation.
Third, one needs to define a fitness function that the search algorithm can use to
find the best possible solution. This fitness function is generally independent of the
algorithm and the representation, and so we start by looking at this.

The dominant fitness function in use today consists of two parts: The approach
level was introduced by Wegener et al (2001), and measures the distance in the
control flow between a given test execution and a target statement. For example,
assume we want to generate inputs for our power function example (Figure 1) in
order to reach line 8, which is in the while loop. The approach level tells us how
close a given execution was to reaching the target (line 8) in terms of the control
flow. An initial idea might be to measure the distance between a given execution
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Fig. 15: Control dependence graph of the power function
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Fig. 16: Approach level illustrated for the target statements in line 8/9. Each control
dependency away from the target node increases the approach level by one.

and the target node in the control flow graph (Figure 4), and indeed in our exam-
ple this would be possible. However, in practice not all branches are of relevance
for reaching a target branch. For example, assume the then-branch of the second
if-condition (line 4) would only produce a warning message, but continue execu-
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Table 3: Example branch distance values for two of the if-conditions of the power
function.

Value of e if(e > 0) if(e > 0) if(e != 0) if(e != 0)
True False True False

-100 0 101 0 100
-10 0 11 0 10
-1 0 2 0 1
0 0 1 1 0
1 1 0 0 1

10 10 0 0 10
100 100 0 0 100

tion after that. In this case, whether or not this branch evaluates to true or false
is irrelevant for reaching the target line 8. In contrast, in our version of the pro-
gram an exception is thrown in line 5 and so it is necessary for the if-condition
to evaluate to false such that we can reach our target statement. This dependency
relation between nodes of the control flow graph is captured in the control depen-
dence graph. Loosely stated, a node A is control dependent on another node B if
every path in the CFG to A goes through B, but not every path through B also leads
to A. The control dependence graph can be generated by determining all domina-
tors and post-dominators (see (Young and Pezze, 2005) for a gentle introduction to
static analysis and dominator/post-dominator calculation). Figure 15 shows the con-
trol dependence graph of our example program: Besides the entry-node, our target
statement has three control dependencies, as highlighted in Figure 16. If we, for ex-
ample, execute inputs (0,−1), then the first if-condition would evaluate to true, thus
diverging the execution from reaching the target. Looking at the control dependence
graph we see that there are 2 control dependencies between the target node and this
branch, and so this test would have an approach level of 2. If we would try input
(0,0), then we would get one if-condition further, thus reducing the approach level
to 1. If we reach the loop-header of the while-loop, then the approach level is 0.
Thus, the objective of the search is to minimize the approach level.

The second part of the standard fitness function is the branch distance, which was
introduced by Korel (1990). The idea is to estimate for a given branching statement
in the source code how far it is from evaluating to true or to false. For example, con-
sider the if-statement in Line 2 of Figure 1: (if(e < 0)). This condition evaluates
to true if e is less than 0. The branch distance for making the condition true is per
definition 0 if e is already less than 0. However, if e is greater or equal to 0, then the
search needs guidance towards making e less than 0. This is achieved by making
the branch distance greater the larger e is; it also needs to be greater than 0 if e
equals 0. Thus, the branch distance is calculated as e + 1. Conversely, the distance
to making the if-condition false is 0 if the condition is already false, and it is abs(e)
if it is true, thus guiding the search towards making e greater or equal to 0. Similar
rules are defined for all types of comparisons. For example, Table 3 lists the branch
distance values for two of the if-conditions of the power function. A further ques-
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Fig. 17: Search landscape for reaching line 5 in the power function (assuming
floating point numbers for illustrative purposes), based on approach level and branch
distance. The global optimum (minimum) is at (0, 0).

tion is how to combine branch distances for conditions joined together using logical
operators. For conjunctions, the branch distance is the sum of constituent branch
distances, and for disjunctions it is the minimum branch distance of the constituent
branch distances. A detailed overview of the different types of branch predicates
and their distance functions is provided by Tracey et al (1998).

The combination of approach level and branch distance was proposed by We-
gener et al (2001): The resulting fitness function consists of the approach level plus
the branch distance for the control dependent branch at which the execution diverged
from reaching the target statement; both values are minimized. To ensure that the
branch distance does not dominate the approach level it is normalised in the range
[0,1], whereas the approach level is an integer number. For example, if we target line
8 in our example again and consider test input (0,−10), then this will diverge at the
first if-condition, which means approach level 2. It is this branch in which we mea-
sure the branch distance, which is abs(−10−0) = 10. To normalize this value, we
use, for example, the function provided by Arcuri (2013), which is simply x/(x+1).
Consequently, our overall fitness value is 2+ 10/(10+ 1) = 2.909. Increasing the
value of e to -9 changes the fitness value to 2+ 9/(9+ 1) = 2.9, and so on. This
standard fitness function — or indeed any other fitness function (Harman and Clark
(2004) argue that many standard metrics used by software engineers can serve as
fitness functions) — can be applied in almost any meta-heuristic search algorithm,
once the representation of test data has been suitably encoded for the algorithm.

As a simple example, assume we want to apply hill-climbing to the example
power function (Figure 1), in order to reach line 5 which throws an exception as
both inputs are 0 (which, of course, would be trivially easy for a human tester). The
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representation is simply a tuple (b,e) for the two input parameters, and we need
to define a neighbourhood, for which we can use the Moore neighbourhood (i.e.,
(b−1,e−1), (b−1,e), (b,e−1), ...). Figure 17 depicts the resulting search space:
There is a global optimum at (0, 0); for values of e < 0 the search is guided by the
branch distance for making e greater or equal to 0. For values of e greater or equal
than 0, the approach level is one less, and the search is guided by the combination
of the branch distances of e and b.

Hill climbing starts by selecting random values for b and e, and calculating the
fitness value of that input pair. Calculating the fitness value in this case means ex-
ecuting the power function with these inputs. Instrumentation is required in order
to calculate the approach level and branch distances from which to calculate the
overall fitness value. Then, the fitness value of the neighbours of that point are cal-
culated, and the neighbour with the best fitness value is chosen as next position.
There, the algorithm again looks at all neighbours and so keeps moving until an
optimal solution has been found.

Korel (1990) describe a variant of hill-climbing search known as the Alternating
Variable Method: For a program with a list of input parameters, the search is ap-
plied for each parameter individually in turn. To increase efficiency, the search on
a parameter does not consist of the basic hill-climbing of a neighbourhood as just
described; instead, ’probe’ movements are first applied to determine in which direc-
tion the search should head. For example, our power function has two parameters
(b,e). AVM would start with a random assignment of values to these parameters,
e.g. (−42,51). First, AVM would apply probe movements of b+1 and b−1 on the
first parameter, b. That is, it would run (−41,51) and (−43,51). If neither of the
two movements leads to a fitness improvement, then the next parameter in the list is
considered (e). If one of the probes on b leads to an improvement, then the search
is applied in the direction of the probe using an accelerated hill-climber, where the
step size is increased with a factor of 2 with each step. Thus, if (−41,51) improved
fitness, the next step will be a movement by +2 (−39,51), then +4 (−35,51), and
so on, until the fitness does no longer improve. If this happens, the algorithm starts
with probes on the same parameter again. If no more improvements can be achieved,
it moves on to the next parameter. If neither parameter can be improved, then AVM
is restarted with new random values. The chaining approach (Ferguson and Korel,
1996) improves this by considering sequences of events rather than individual in-
puts.

The use of genetic algorithms for test data generation was initially proposed by
Xanthakis et al (1992), and later used by many other authors. Genetic algorithms are
population-based, which means that rather than optimizing a single individual, there
is a whole population of candidate solutions that undergo modifications simulating
those in natural evolution. For example, the fitter an individual the higher the proba-
bility of being selected for recombination with another one, etc. Early work such as
that by Xanthakis et al (1992) and Jones et al (1996) encoded test data as binary se-
quences, as is common with genetic algorithms. In the case of our power function
with two inputs, if we assume that each of the input parameters is represented as an
8-bit number, then a chromosome would be a sequence of 16 bits. For example, the
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input (10, 3) would be encoded as 00001010 00000011. Based on the fitness
function as described above, a population of such individuals would be evolved by
first selecting parent individuals based on their fitness; the fitter an individual, the
more likely it is selected for reproduction. For example, tournament selection con-
sists of selecting a set (e.g. 5) of individuals randomly, and then choosing the fittest
of that set. Two chosen parent individuals are used to produce offspring with the
search operators of mutation and crossover, which are applied with a certain prob-
ability. For example, consider two individuals (10, 3) and (24, 9). let us assume we
select our crossover point right in the middle between, then two offspring would
be produced by combining the first half of the first test with the second half of the
second test, and vice versa:

00001010 00000011 → 00001010 00001001
00011000 00001001 → 00011000 00000011

Mutation would consist of flipping individual bits in a chromosome, for example:

00001010 00000011 → 00001010 00100011

Later work using genetic algorithms, for example by Michael et al (2001), Par-
gas et al (1999), or Wegener et al (2001) uses real value encoding. In this case, a
chromosome would not be a sequence of binary numbers, but simply a vector of
real numbers (e.g., (10,3)). More recently, Tonella (2004) demonstrated the use of
genetic algorithms to generate unit tests for object-oriented classes, where each test
is represented as a sequence of calls that construct and modify objects, which has
spawned significant interest in automated unit test generation. The benefit of search-
based testing clearly shows in this type of work: The underlying fitness function to
generate a test that covers a specific goal is still the same as described above, and a
genetic algorithm is also still used; the only difference lies in the changed represen-
tation, which is now sequences of constructor and method calls on objects, together
with appropriate mutation and crossover operators. Fraser and Arcuri (2013) have
extended this work to show generating sets of tests leads to higher code coverage
than generating individual tests, and the resulting EvoSuite6 tool is recently seeing
high popularity. Again a genetic algorithm is used; the representation here is no
longer individual sequences of calls but sets of sequences of calls, and the fitness
function is an adaptation of the branch distance. It is even possible to apply exactly
the same search algorithm and fitness function with a test representation of user in-
teractions, as done by Gross et al (2012) — a clear demonstration of the flexibility
of search-based testing.

Symbolic execution

Originally proposed by King (1976) and neglected for a long time period due to
its inherent scalability limitations, symbolic execution has gained more relevance
in the last decade thanks to the increased availability of computational power and

6 EvoSuite - Automatic Test Suite Generation for Java. http://evosuite.org. Accessed March 2017.

http://evosuite.org
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advanced decision procedures. White-box test data generation stands out as one of
the most studied application of symbolic execution. Among the most relevant early
work, DeMillo and Offutt (1991) combined symbolic execution and mutation anal-
ysis to derive fault-revealing test data with the Mothra testing system and Gotlieb
et al (1998) developed a more efficient constraint-based test generation approach
with early pruning of unfeasible paths. More recently, many new techniques and
tools have been developed which rely on symbolic execution for test generation,
some of them with industrial and commercial impact, as surveyed by Cadar et al
(2011).

Symbolic execution consists in executing a program under test using symbolic
variables instead of concrete values as input arguments. At any point along the exe-
cution, a symbolic state consists of symbolic values/expressions for variables, a path
condition and a program counter. The path condition represents the constraints that
must hold for the execution to follow the current path. When a conditional statement
is reached (e.g., if or loop conditions), the symbolic execution forks to explore the
two possible outcomes of the conditional, each with a different updated path condi-
tion. Every time a new constraint is added to it, the satisfiability of the path condition
is checked – normally using off-the-shelf constraint solvers. If the new path condi-
tion is satisfiable, the symbolic execution continues along that path, otherwise the
path is ignored, since it has been proved unsatisfiable.

Figure 18 shows how symbolic execution works on our running example. The
root node represents the starting point of the executions, with the input arguments
being bound to unconstraint variables and an empty path condition. When reaching
the first if statement, the symbolic execution evaluates the if condition to both true
and false. In the first case, the constraint E < 0 is added to the path condition,
terminating the program with an exception due to a negative exponent passed as
input (terminating nodes are denoted with gray boxes). The second case corresponds
to a valid exponent passed as argument (zero or positive). The second if condition
is handled similarly to the first one; notice how the path conditions are updated with
complementary constraints. Loop conditions are evaluated as normal conditionals.
However, when the loop condition depends on an input argument, as in our example,
a bound on the exploration depth must be imposed to ensure termination. Figure 18
covers the cases where the loop is not entered at all (the exponent is zero), the case
where the loop is entered and its body is executed only once (exponent is one), and
leaves paths with greater exponent values unexplored (dotted leaf node in the tree).

Dynamic symbolic execution

The frequently huge search space and vast complexity of the constraints to be han-
dled in symbolic execution hamper the scalability and practicality of testing ap-
proaches based on symbolic execution. Moreover, due to its systematic nature, sym-
bolic execution is oblivious to the feasibility of an execution path at runtime, hence
it is prone to produce false positives. To alleviate these limitations, Godefroid et al
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Fig. 18: Symbolic execution of the power example

(2005) and Sen et al (2005) proposed dynamic symbolic execution as a combination
of concrete and symbolic execution (hence also dubbed concolic execution).

Dynamic symbolic execution keeps track of a concrete state alongside a sym-
bolic state. It starts by executing the system under test with randomly generated
concrete input values. The path condition of this concrete execution is collected and
its constraints are systematically negated in order to explore the vicinity of the con-
crete execution. This alternative has been shown to be more scalable than traditional
symbolic execution alone because it allows a deeper exploration of the system and
can cope with otherwise problematic features like complex non-linear constraints or
calls to libraries whose code is unavailable for symbolic execution.

To illustrate a case in which intertwining concrete and symbolic execution over-
comes an inherent limitation of traditional symbolic execution, let us modify slightly
our running example by adding a conditional statement guarding an error state 19.
Let us assume that the execution of mist(b, e) relies on either a non-linear con-
straint over e or a system call. Due to the current limitations in constraint solving
or to the impossibility of symbolically executing native code, symbolic execution
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1 int power(int b, int e){
2 if (e < 0)
3 throw new Exception("Negative exponent");
4 if ((b == 0) && (e == 0))
5 throw new Exception("Undefined");
6 if (b != mist(b, e))
7 throw new Exception("Error");
8 int r = 1;
9 while (e > 0){

10 r = r * b;
11 e = e - 1;
12 }
13 return r;
14 }

Fig. 19: Modified running example

would be unable to enter the then branch of the conditional, hence it would fail to
produce a test revealing the error. In contrast, dynamic symbolic execution would
use the concrete values of b and a to invoke mist and execute the error-revealing
branch.

Multiple tools have been proposed which implement this dynamic symbolic ex-
ecution approach. Among the most successful ones, DART (Godefroid et al, 2005)
has been shown to detect several programming errors (crashes, assertion viola-
tions and non-termination) related to arithmetic constraints in C. CUTE (Sen et al,
2005) also supports more complex C features (e.g., pointers and data-structures),
KLEE (Cadar et al, 2008) can significantly improve coverage of developer-written
tests, and SAGE (Godefroid et al, 2008b) is used daily to test Microsoft software
products such as Windows and Office.

3.3.3 Concurrency Testing Techniques

While many test generation approaches target sequential programs and standard
structural coverage criteria, there is also a need generate tests for concurrent pro-
grams. Arguably, the need for automation is even higher in this case, since manu-
ally testing concurrency aspects is particularly tedious. A very successful approach
to testing concurrency aspects of programs lies in using existing tests, and then
manipulating the thread interleavings while executing the test. For example, Con-
test (Edelstein et al, 2002) repeatedly executes tests and adds random delays at syn-
chronization points. The CHESS (Musuvathi et al, 2008) tool systematically ex-
plores thread schedules with a stateless model checking approach, and can reliably
find concurrency issues. Generating tests dedicated to explore concurrency aspects
is a more recent trend; the Ballerina (Nistor et al, 2012) tool uses random test gen-
eration to explore interleavings, and ConSuite (Steenbuck and Fraser, 2013) uses
search-based test generation to generate test suites targeting concurrency coverage.



Software Testing 43

3.4 Executing Tests

In any industrial development scenario, as programs grow in size, so do the test
suites accompanying them. Software companies nowadays rely on automated frame-
works for managing their build processes and executing their test suites (e.g., Jenk-
ins7 and Maven Surefire8). Moreover, continuous integration frameworks enable de-
velopment teams to ensure functionality and avoid regression defects in their code-
bases by running existing tests every time a change has been made. Efficient test
execution soon becomes a challenge. How to control the size of a test suite? How
to ensure that changes to the codebase do not break existing functionality? How
to decide which tests to run after each change? How to extend existing test suites?
This practice is known as regression testing. In this section, we describe the most
outstanding optimization techniques related to the execution of test suites to detect
bugs as software evolves. As in previous sections, an overview is presented in Fig-
ure 20 and we can also here point to a comprehensive survey on the topic, this time
by Yoo and Harman (2012), for more detailed information.

3.4.1 Automated Test Execution

While there are many obvious benefits to automating test execution (e.g., re-
usability, reduced regression testing time), there is the question how this automa-
tion is achieved. A widespread technique with a long tradition is the family of
capture and replay tools. Besides many commercial tools, an example of an open
source capture and replay framework is Selenium (see Section 2). In these tools, the
tester interacts with the program under test, and while doing so the interactions are
recorded. Later, these recorded interactions can be replayed, and an automated sys-
tem performs the same actions again. An important benefit of this approach is that
the tester needs to have no programming knowledge, but simply needs to be able
to use the program under test. However, capture and replay tests tend to be frag-
ile (Hammoudi et al, 2016): If the position of a button is changed, or if the locator
of an element on a web page is changed, then all tests interacting with that element
fail and need to be repaired, or re-generated.

A more flexible approach thus lies in making the tests editable, which can be
done in different ways. In keyword-driven testing (Faught, 2004), testers create au-
tomated tests in a table format by using keywords specific for the application under
test, for which developers provide implementations. Many testing frameworks pro-
vide custom domain-specific scripting languages; for example, tools like Capybara9

allow testers to write automated functional tests that interact with the program un-

7 Jenkins - Open source automation server. https://jenkins.io. Accessed March 2017.
8 Surefire - A test framework project. http://maven.apache.org/surefire/. Accessed March 2017.
9 Capybara - Acceptance test framework for web applications. http://teamcapybara.github.io/
capybara/. Accessed March 2017.

https://jenkins.io
http://teamcapybara.github.io/capybara/
http://teamcapybara.github.io/capybara/
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Test
Execution

Test Suite Minimization
(Harrold et al, 1993)

Model-based
(Korel et al, 2002)

Integer Linear Programming
(Hsu and Orso, 2009)

Model checking
(Fraser and Wotawa, 2007)

Effects on Fault-detection
(Rothermel et al, 1998; Wong et al, 1998)

Unit Test Minimization
(Leitner et al, 2007)

Regression Test Selection
(Rothermel and Harrold, 1997)

Model-based
(Briand et al, 2009)

Multi-objective Optimization
(Yoo and Harman, 2007; Panichella et al, 2015)

Integer Linear Programming
(Mirarab et al, 2012)

Empirical Studies
(Mansour et al, 2001; Graves et al, 2001)

Test Case Prioritization
(Rothermel et al, 2001)

Adaptive Random
(Jiang et al, 2009)

Search-based
(Li et al, 2007b)

Model-based
(Korel et al, 2005)

Empirical Evaluation
(Elbaum et al, 2002)

Fig. 20: Executing Tests: Genealogy Tree

der test using a choice of backends. However, it is also very common to use regular
scripting languages (e.g., Python) to automate tests.

In 1998, Kent Beck introduced the SUnit framework for automated tests for the
Smalltalk language (Beck, 1999). Similar frameworks have since then been pro-
duced for almost any programming language, with Java’s JUnit, originally imple-
mented by Kent Beck and Erich Gamma, maybe being the most well-known exam-
ple. The current version of JUnit is JUnit 4, and we have already seen some examples
of JUnit tests in this chapter. For example, the following test calls the power func-
tion with parameters 10 and 10, and then uses a JUnit assertion (assertEquals)
to check if the actual result matches the expected result, 100:

1 @Test
2 public void testPowerOf10() {
3 int result = power(10, 10);
4 assertEquals(100, result);
5 }

While the name xUnit suggests that these frameworks target unit testing, they are
not only useful for unit testing. It is similarly possible to write automated integration
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Test Input Testing requirement (line)

2 3 4 5 6 7 8 9 11

t1 (0, -10) x x
t2 (0, 0) x x x
t3 (10, 0) x x x x x
t4 (1, 1) x x x x x x x
t5 (2, 2) x x x x x x x
t6 (-10, 0) x x x x x
t7 (-2, 2) x x x x x x x

Table 4: Test cases and testing requirements

tests, and by using testing frameworks such as Selenium it is also possible to write
automated system tests using JUnit.

3.4.2 Test Suite Minimization

As software evolves, managing the size of existing test suites become a necessary
task: existing tests can become obsolete (i.e., they test behavior that is no longer
implemented) or redundant (i.e., they do not contribute to increasing the overall
effectiveness of the test suite). Maintaining test suites is seldom the priority of any
development team and hence it is often neglected. Developers normally add new
tests when a change is made or new behavior is implemented. However, developers
seldom check whether existing tests already cover the modified code or whether
tests have become unnecessary after a change. Harrold et al (1993) developed a
methodology to control the size of existing test suites by automatically detecting
and removing obsolete and redundant test cases.

Given a system under test, a set of tests and a set of test requirements (e.g., line
coverage), the test suite minimization problem consist in constructing the smallest
possible test suite such that the effectiveness of this new test suite –the number of
fulfilled test requirements– is the same as the effectiveness of the original suite.
Because this is an NP-complete problem, Harrold et al (1993) developed a heuristic
to find a representative solution and demonstrated that the size of a test suite can be
significantly reduced even for small programs.

The algorithm proposed by Harrold et al (1993) uses knowledge about the rela-
tion between tests and testing requirements to minimize a test suite: the set of re-
quirements each test meets must be known. Let us describe their algorithm through
an example. Table 4 shows a list of 7 test cases for the power function. We as-
sume that our test requirements are based on statement coverage; to make the test
requirements easy to interpret, we list them with their line numbers. The table lists
for each test which of the test requirements (statements/lines) it covers. If a test ti
meets requirement r j, an x is shown at cell (i, j). The algorithm starts with an empty
test suite T . First, requirements that are met by one single test are considered and
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those tests are added to the resulting suite. In the example, the statements on lines 3
and 5 are each met by only one test (t1 and t2, respectively), hence T = T ∪{t1, t2}
and lines 2, 3 and 5 are marked as covered. Then, the process iteratively looks at
test requirements not met yet which are met by two tests, then those met by three
tests, and so on. In our example, there are no requirements covered by two tests, but
the lines 8 and 9 are covered by three tests (t4, t5, and t7). If there are several can-
didates to choose from, ties are resolved by considering the test requirements with
the next cardinality covered by the candidate tests. However, since our tests cover
exactly the same, this tie can only be broken by randomly choosing one, e.g., t4,
making T = {t1, t2, t4}. Since all test requirements are now met by T , minimization
is complete and T is the final minimized test suite.

Following the seminal work by Harrold et al (1993), the effects of test suite min-
imization on the fault-detection of the minimized test suites was studied by Rother-
mel et al (1998) and Wong et al (1998). More recent approaches have explored
alternatives approaches beyond the relation of tests with coverage requirements.
Korel et al (2002) used a dependence analysis on finite state machine models to
guide test suite reduction. Hsu and Orso (2009) developed a framework to encode
multiple criteria (e.g., coverage, cost, fault-detection) into an integer linear program-
ming (ILP) problem and used modern ILP solvers to derive optimal solutions. Fraser
and Wotawa (2007) minimized test suites by identifying and removing redundancy
among automatically generated test cases. A different flavour of test minimization
was explored by Leitner et al (2007), who used program slicing and delta debug-
ging to minimize the sequence of failure-inducing method calls in the test code (as
opposed to removing tests from the test suite).

3.4.3 Regression Test Selection

While test suite minimization allows to reduce the number of tests to be executed,
removing redundant tests altogether entails a danger in the long run. A test might
be removed solely on the basis that another test that meets the same testing require-
ment already exists. However, it is not hard to imagine that the removed test may
have been useful to reveal future bugs. Selecting the best tests for regression testing
comes as an alternative to test suite minimization: it is not a problem to keep large
test suites in the codebase, as long as the set of tests to be run whenever a change
has been made is carefully decided.

Regression test selection comprises two sub-problems: identification of affected
code and selection of tests to run. Integer programming, symbolic execution, dataflow
analysis, and path analysis are examples of general techniques that have been suc-
cessfully applied to the regression test selection problem. Rothermel and Harrold
(1997), for instance, formulated a safe and efficient technique based on the traversal
of the control flow graphs (CFGs) of the original and modified versions of the sys-
tem which has served as seminal work in this area. The main idea is to identify the
parts of the program affected by a change by performing a parallel traversal of both
CFGs. At each step in the traversal, the current nodes from both graphs are com-
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pared for lexicographical equivalence. If any difference is found, the tests traversing
a path from the entry node to such modification node are collected and included in
the selection set (these tests are referred to as modification-traversing tests).

Test Test trace

t1 (Entry, L2), (L2, L3), (L3, Exit)
t2 (Entry, L2), (L2, L4), (L4,L5), (L5, Exit)
t3 (Entry, L2). (L2, L4), (L4, L6), (L6, L7), (L7, L11), (L11,Exit)
t4 (Entry, L2), (L2, L4), (L4, L6), (L6, L7), (L7, L8), (L8, L9), (L9, L7), (L7,L11), (L11,Exit)

Table 5: Test trace for regression test selection

To illustrate this algorithm, consider the CFG in Figure 21. Consider the existing
test cases as well, whose traces are shown in Table 5 as sequences of edges between
two consecutive nodes in the CFG of the original program (Figure 4). Observe how
the modified CFG differs from the original one: the statement in line 9 (which con-
trols the loop termination) has been mistakenly removed, and the statement in line
5 has been changed (assume the specification changed and a different exception is
now thrown). The algorithm starts by initializing the set of selected tests to empty
and comparing both entry nodes. The algorithm proceeds by recursively traversing
both CFGs at the same time, without finding any difference after traversing the path
(Entry,L2), (L2,L4), (L4,L6), (L6,L7), (L7,L8). However, when comparing L8 be-
tween the two CFGs, a difference is observed in the successor node of L8 (L9 in the
original version, L7 in the modified version). As a result, tests traversing the edge
(L8, L9), i.e., {t4}, are added to the selection set. Similarly, when exploring the true
branch of node labeled L4, a difference is observed in the successor L5, which fur-
ther triggers the inclusion of a test that traverses the edge (L4,L5), namely t2. The
resulting selected test suite is then {t2, t4}.

The above described algorithm works at the intraprocedural level, i.e., within
the frontiers of a single procedure, function or method. In the same seminal work,
Rothermel and Harrold (1997) also extended the algorithm for interprocedural
testing, where subsystem and system tests tend to be larger than tests for single
procedures. This extended test selection algorithm performs CFG traversals simi-
larly to the intraprocedural algorithm, but additionally keeps track of modification-
traversing information across procedure calls. A key idea for this to work is that
the traversal of the CFG of each method in the system is conditioned to the non-
existence of a previous difference between the two CFGs under comparison.

Mansour et al (2001) and Graves et al (2001) explored the properties of different
test selection techniques and their relative costs and benefits for regression testing.
Alternative methods to inform test selection have been studied in recent years. Yoo
and Harman (2007) and later Panichella et al (2015) formulated regression test se-
lection as a multi-objective search optimization problem. Analogously to the work
of Hsu and Orso (2009) for test suite minimization, Mirarab et al (2012) formulated
test selection as a multi-criteria integer linear programming problem. Model-based
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approaches have also been explored for test selection: Briand et al (2009), for in-
stance, presented an methodology to guide regression test selection by the changes
made in UML design models.

Fig. 21: Control flow graph of the modified power function

3.4.4 Test Case Prioritization

Complementary to test suite minimization and selection, test case prioritization aims
at finding the best order in which a set of tests must be run in an attempt to meet
the test requirements as early as possible. Rothermel et al (2001) investigated sev-
eral test case prioritization techniques with the aim to increase the fault-revealing
ability of a test suite early in the testing as soon as possible. However, because
fault-detection rates are normally not available until all tests have run, other metrics
must be used as surrogates to drive test prioritization. In their work, Rothermel et al
(2001) formulated test requirements as the total code coverage achieved by the set
of tests (branch and statement coverage), their coverage of previously not covered
code (again, using branch and statement coverage), or their ability to reveal faults
in the code (using mutation testing). In the case of structural coverage surrogates,
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Fig. 22: Mutants found with test cases ordered using different prioritization tech-
niques.

a greedy algorithm is used to prioritize tests that achieve higher coverage. In the
case of fault-revealing ability, the mutation score of a test, calculated as the ratio
of mutants executed and killed by the test over the total number of non-equivalent
mutants determines the priority of each test.

A common way to illustrate prioritization techniques is to show how the order of
execution influences the rate of detection for a given set of faults. Let’s assume we
generate a set of faults (mutants) using the Major10 mutation tool (Just et al, 2011)
for our power function example, which gives us a set of 31 mutants. Consider the
test suite shown in Table 4, which kills 24 of these mutants. Depending on the order
in which the tests are executed, these mutants will be killed sooner or later. Figure 22
illustrates the rate at which the mutants are found. For example, if we execute the
tests in a random order, e.g., t5, t3, t4, t6, t7, t2, t1, then the first test kills 9 mutants,
the second one 3 additional mutants, and so on. If we prioritize based on the total
coverage achieved by each tests, then the tests would be executed in the order t4, t5,
t7, t3, t6, t2, t1, resulting in 11 mutants killed by the first test, then another 4, and so
on. If we prioritize tests by the additional coverage they provide over previous tests,
then we would execute them, for example, in order t4, t2, t1, t5, t7, t3, t6, such that by
the time of the third test already 22 mutants are killed, and by the 5th test is execute
all mutants are killed.

The effect of the test case order can be quantified as the weighted average of the
percentage of faults detected, known as the APFD metric, introduced by Rothermel
et al (2001). In essence, the APFD metric calculates the area under the curves shown
in Figure 22. The average percentage of faults detected by the random order in

10 The Major mutation framework. http://mutation-testing.org/. Accessed March 2017.

http://mutation-testing.org/
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Figure 22 is 0.64, whereas total coverage prioritization increases this to 0.68, and
the additive coverage prioritization increases this further to 0.85, confirming that
this is the best order in which to execute the tests.

Similarly to test suite minimization and regression test selection, research on test
case prioritization has evolved to empirically validate the benefits of prioritizing
tests (e.g., Elbaum et al (2002)) and to explore alternative ways to inform the pri-
oritization. Korel et al (2005) presented several methods to prioritize tests based on
information of changes to state-based models of a system. Li et al (2007b) showed
that search-based algorithms could be applied for test prioritization and Jiang et al
(2009) showed that adaptive random testing was as effective as and more efficient
than existing coverage-based prioritization techniques.

3.4.5 Testing Embedded Software

Embedded systems define a wide range of different systems where the software in-
teracts with the real world. An embedded system typically controls some specific
hardware, receives input signals through sensors, and responds with outputs sent
through actors; these outputs then somehow manipulate the environment. Embed-
ded software is often targeted for specific hardware with limited resources. The
restricted hardware and the interactions with the environment through sensors and
actuators poses specific challenges for testing these systems: Tests need to some-
how provide an environment that creates the necessary sensory input data, and up-
dates the environment based on the system’s actions. To achieve this, testing of
embedded systems is usually performed at different levels (Broekman and Noten-
boom, 2003). Since embedded systems are often developed using model-driven
approaches (Liggesmeyer and Trapp, 2009), the first level of testing is known as
model-in-the-loop. At this level, the model of the program under test is embedded
in a model of the environment, and then tested. At the software-in-the-loop, the com-
piled program is tested in the simulated environment, but still on the development
hardware. At the processor-in-the-loop the software is executed on the target hard-
ware, but still interacts with the simulated environment. Finally, at the hardware-
in-the-loop level, the actual system with real sensors and actuators is tested on a
test-bench with a simulated hardware environment.

A specific aspect of testing embedded systems is that timing in these systems is
often critical. That is, these real-time systems must often guarantee a response to
an input signal within specified time constraints. There are various approaches to
testing the violation of timing constraints (Clarke and Lee, 1995); in particular, the
use of Timed Automata (Nielsen and Skou, 2001) is an approach that is popular in
the research domain to formalize timing constraints in systems.

The use of formal specifications and conformance testing (Krichen and Tripakis,
2009) is relatively common in the domain of real-time embedded systems, possibly
because these systems are often safety critical. That is, errors in such programs
can cause physical harm to users, such that common international standards (e.g.,
IEC61508 (Commission et al, 1999)) require rigorous software testing methods.



Software Testing 51

Fig. 23: Software testing research published between 2007–2017 at the main soft-
ware engineering conferences.

For example, the DO-178B standard (Johnson et al, 1998), which is used by the US
Federal Aviation Administration for safety critical software in aircrafts, requires that
software tests need to be adequate according to the MC/DC criterion (Section 3.1.2).

3.5 Current Trends in Testing Research

This chapter has so far focused on seminal work in testing, but not all of these as-
pects of testing are active areas of research. In order to provide an intuition about
current trends, we now take a closer look at research activities in the last 10 years.
We collected the titles of all papers published at mainstream software testing re-
search conferences (IEEE International Conference on Software Testing, Verifica-
tion, and Validation, ACM International Symposium on Software Testing and Anal-
ysis), and all papers related to testing published at mainstream software engineering
conferences (IEEE/ACM International Conference on Software Engineering, SIG-
SOFT Symposium on the Foundations of Software Engineering, IEEE/ACM Con-
ference on Automated Software Engineering). Figure 23 summarizes the paper titles
in a “word cloud”, in which several trends become apparent.

Model-based testing

The most frequent term in Figure 23 is “automata”, and this is related to gener-
ally frequent terms related to model-based testing. A commonly made assumption
by researchers is that testing techniques have some sort of formal specification or
model as a starting point. The reason this is popular in research is clear: Automation
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requires some form of executable representation of the intended behavior. Given
a formal specification, for example in terms of an automaton, it is possible to de-
rive sequences of inputs that fully cover the behavior, it is possible to predict what
their expected response is, and it is typically possible to cover the intended behavior
in fewer tests based on an abstract specification compared to the concrete imple-
mentation. A particularly attractive aspect of automata-based testing is the prospect
of guarantees that can be made by testing (Lee and Yannakakis, 1996; Tretmans,
1996). For example, under certain assumptions it is possible to prove properties of
the system under test. There is also a wealth of different techniques and tools origi-
nating in formal methods that can be exploited to support testing tasks. For example,
although the aim of model checking tools is to prove properties, their ability to pro-
vide counterexamples for violated properties has been used as a means to generate
tests. As a basic example, each coverage goal can be represented as a property that
states the goal cannot be achieved, and then the counterexample to such a property
is, essentially, a test that does cover the goal (Fraser et al, 2009).

Automated test generation

A trend clearly reflected in Figure 23 is research on automated test generation. The
ongoing and ever more severe problems in practice caused by software reinforce the
need for thorough software testing, but since testing is a laborious and error-prone
activity, researchers seek to automate as much of the testing process as possible.
While some aspects, like test execution, are commonly automated in practice, the
task of deriving new tests usually is not automated. Therefore, this is a central prob-
lem researchers are aiming to address. There is an overlap between this topic and
model-based testing; however, more recently techniques to generate tests without
explicit specifications (e.g., based on source code, or inferred models) are becoming
more popular.

Research on automated test generation is influenced by the different applica-
tion areas and types of programs. Test generation is most common for system
and unit testing, but less common for integration testing. Web and mobile appli-
cations (Di Lucca and Fasolino, 2006; Choudhary et al, 2015) are new application
areas that have seen a surge of new publications in recent years.

Very often, when exploring a new testing domain the first approach is to use
random test generation (e.g., (Pacheco et al, 2007)), and this tends to work surpris-
ingly well. Since the original coining of the term “search-based software engineer-
ing” (Harman and Jones, 2001b), this has now become a mainstream approach to
test generation, and is seeing many applications. A further recent trend in test gen-
eration is the use of symbolic methods: While for a long time they were neglected
because the power of constraint solvers was deemed insufficient for test generation,
the vast improvements made on SAT solvers in recent years have caused a prolifer-
ation of test generation approaches based on symbolic techniques, such as dynamic
symbolic execution (Godefroid et al, 2005; Sen et al, 2005).
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Often, in a newly explored application area of automated test generation, the
initial objective is to find program crashes, because a crashing program can al-
ways be assumed to be a problem, without knowing any further details about the
intended behavior. However, once test generation techniques mature, the test oracle
problem (Barr et al, 2015) becomes more prominent: Given automatically generated
tests, how do we decide which of these tests reveal bugs?

Test analysis

Terms related to test analysis are common in Figure 23. On one hand, code coverage
is a generally accepted default objective of test generation. On the other hand, the
suitability of code coverage as a measurement of fault detection effectiveness has
been the focus of discussions more recently (Inozemtseva and Holmes, 2014). This
is why, in the research community, mutation testing has risen in popularity (Jia and
Harman, 2009). While mutation testing still suffers from scalability issues, there
has been substantial progress on making mutation testing applicable in practice in
recent years.

3.6 Current Trends in Software Testing Practice

Developers are testers

Over the last ten years, Agile software development has transformed the role of
quality assurance. Where previously quality assurance was usually done separately,
this is now integrated into the software development process. Developers now own
software quality and are therefore in charge of testing their code early in the process.
The largest software companies are leading this testing revolution by redefining
their development and testing engineering roles. Developers are using unit testing
to drive the development of new features (Test-driven Development (Beck, 2003)).
While pure-testing roles still exist, their work has evolved from scripted testing to
exploratory testing (Kaner, 2006), with emphasis on understanding and verifying
requirements, interfacing with business stakeholders, and discovering problems at
the system or application level.

Test-driven Development (TDD), introduced in the late 90’s, is a central approach
in this large-scale testing paradigm shift. In TDD, developers apply short develop-
ment cycles consisting of three phases. First, they write unit tests for unimplemented
functionality. Then they write the minimal amount of code necessary to make these
tests run correctly (i.e., pass). Finally, they refactor and optimize their code, pre-
serving quality. The benefits of using TDD are evident by its extensive usage in
practice, but also have been confirmed via empirical research (Shull et al, 2010).
Acceptance test–driven development (ATDD) (Beck, 2003) and behavior-driven de-
velopment (BDD) (North, 2006) are extensions of TDD that promote the application
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of agile principles into the development cycle (e.g., permanent communication with
stakeholders).

As a consequence of this paradigm shift, the required skills for software engi-
neers have changed, too. Today, testing skills are important for software developers
in order to write automated tests and adopt and use testing frameworks during de-
velopment. Testers, on the other hand, are required to have a more creative mindset,
since their job goes beyond the mechanical reproduction of scripted tests.

Test automation

The necessity for programming skills in testing is generally related to the trend
towards test automation. Whereas in the past, automated tests required expensive
commercial tools, the availability of high quality open-source testing frameworks
means that automation is now much more feasible and common. Often, the task of
software testing involves not only writing and executing specific tests for a program,
but also engineering elaborate automated testing solutions (Whittaker et al, 2012).

Continuous integration (CI) and automated testing are now standard for most
software projects. CI frameworks, e.g., Jenkins, TeamCity, Travis CI, and GitLab CI,
provide comprehensive sets of features that allow development teams to keep track
of build and test executions and overall software quality. At a finer-grained level,
popular automation tools include Mockito11 (mocking framework) and Hamcrest12

(assertion framework) which are useful to improve the quality and expressiveness
of executable tests. Automation tools also exist which are tailored for specific do-
mains. For example, SeleniumHQ13 automates browser interaction, JMeter14 allows
testing web performance, WireMock15 provides mocking of http interactions, and
Monkey16 automates the stress-testing of apps for the Android mobile operating
system.

The general need for more automation in software testing is further reinforced
by a recent proliferation of companies trying to make a business out of test automa-
tion. For example, the Capterra index of software solutions lists 120 test automation
products at the time of this writing17. Many of these automation systems are still
quite basic in what they automate; for example, many tools support record&replay

11 Mockito – Tasty mocking framework for unit tests in Java. http://mockito.org. Accessed Septem-
ber 2017.
12 Hamcrest – Matchers that can be combined to create flexible expressions of intent. http:
//hamcrest.org. Accessed September 2017.
13 SeleniumHQ – Browser Automation. http://www.seleniumhq.org. Accessed September 2017.
14 Apache JMeter. http://jmeter.apache.org. Accessed September 2017.
15 WireMock. http://wiremock.org. Accessed September 2017.
16 UI/Application Exerciser Monkey. https://developer.android.com/studio/test/monkey.html. Ac-
cessed September 2017.
17 Best Automated Testing Software – 2017 Reviews of the Most Popular Systems http://www.
capterra.com/automated-testing-software. Accessed September 2017.

http://mockito.org
http://hamcrest.org
http://hamcrest.org
http://www.seleniumhq.org
http://jmeter.apache.org
http://wiremock.org
https://developer.android.com/studio/test/monkey.html
http://www.capterra.com/automated-testing-software
http://www.capterra.com/automated-testing-software
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or scripting of automated tests. It is to be expected that the degree of automation will
continue increasing over time, including automation of aspects like test generation.

Trending application domains

The ongoing shift towards web and mobile applications in software engineering
naturally has effects on testing. Ten out of twenty search topics reported as trend-
ing most over the last ten years as reported by Google Trends18 are related to web
applications and JavaScript testing frameworks. The increasing use of mobile apps
enforces stronger testing requirements, since the connected nature of mobile apps
and their access to sensitive data means that security concerns are more pressing.
The changed ecosystem of apps sold quickly via app stores also implies that insuf-
ficient testing can be the demise of an app if there is a more robust alternative. On
the other hand, the concept of app stores makes it possible to quickly deploy fixes
and updates, often making the end user the tester. A recent trend to improve testing
of apps lies in using crowds of testers in a crowd-testing scenario. This idea was
popularised by companies like uTest (now Applause19), and is now a flourishing
business, with many other crowd testing companies appearing.

4 Future Challenges

4.1 Test Analysis

In this chapter, we have discussed various ways to determine and quantify the ad-
equacy of a test set. Some techniques, such as basic code coverage criteria like
statement or branch coverage, are commonly used in practice. Such source code
metrics, however, can be misleading: Code structure is an unreliable proxy of un-
derlying program behavior, and may not truly measure when a test set is good. As an
example, code coverage on simple getter/setter methods contributes to a code cover-
age measurement, but is unlikely to help finding bugs. A further problem with code
coverage is that it does not measure how well the exercised code is checked. Indeed
there are empirical studies suggesting that code coverage is not strongly correlated
with the effectiveness of a test suite (Inozemtseva and Holmes, 2014).

In this chapter, we discussed mutation analysis as an alternative: Mutation anal-
ysis explicitly checks how well the tests verify expected behavior by seeding artifi-
cial faults. However, mutation testing has one crucial disadvantage – it is inherently
slow. Even though more mutation tools have started to appear, these rarely make
mutation analysis on large code bases feasible. While code coverage is clearly less
computationally expensive, the instrumentation it requires still adds a computational

18 Google Trends. https://trends.google.co.uk. Accessed March 2017.
19 Applause: Real-World Testing Solutions. https://applause.com/testing/. Accessed March 2017.

https://trends.google.co.uk
https://applause.com/testing/
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overhead, and even that can prove problematic on very large code bases where tests
are frequently executed, for example as part of continuous integration.

Thus, there are at least two challenges that need to be addressed: We need bet-
ter adequacy metrics, and we need to make them scale better to large systems. One
avenue of research targeting the former problem goes back to an idea initially pro-
posed by Weyuker (1983): If we can use machine learning to infer from a given set
of tests a model that is an accurate representation of the program, then that set of
tests is adequate. Recent work has shown that this is both feasible and provides a
better proxy of program behavior than pure code coverage (Fraser and Walkinshaw,
2015). To address the problem of scalability, a promising avenue of research lies
in dynamically adding and removing instrumentation, as exemplified by Tikir and
Hollingsworth (2002).

4.2 Automated Testing

Although testing has found a much more prominent spot in the daily life of software
engineers with the uprise of test-driven development and many surrounding tools,
such as the xUnit family of testing frameworks, testing a program well remains an
art. A long-standing dream of software engineering researchers is therefore to fully
automate software testing, and to relieve the developers and testers of much of the
legwork needed to ensure an acceptable level of software quality. We have discussed
various approaches to automatically generating test data in this chapter, but despite
these, the dream of full automation remains a dream.

On one hand, while test generation techniques have made tremendous advances
over the last decades, fully testing complex systems is still a challenge. Sometimes
this is because program inputs are simply too complex to handle (e.g., programs
depending on complex environment states or complex input files), require domain
knowledge (e.g., testing a web app often requires knowing username and password),
or are simply larger than what test generation tools can realistically handle. This
leaves many different open challenges on improving test generation techniques such
that they become able to cope with any type of system.

A second challenge is that tests generated for a specific aim, such as reaching a
particular point in the code, may be completely different to what a human would
produce. As a simple example, generating a text input that satisfies some conditions
may look like an arbitrary sequence of characters, rather than actual words. If such a
test reveals a bug, then developers may have a much harder time understanding the
test and debugging the problem. Maintaining such a test as part of a larger code base
will be similarly difficult. Tests making unrealistic assumptions may also be irrele-
vant – for example, it is often possible to trigger NullPointerExceptions in code by
passing in null arguments, and even though these exceptions technically represent
bugs, developers might often not care about them, as the same scenario may simply
be impossible given the context of a realistic program execution. Finally, test gen-
eration typically only covers the part of test data generation, meaning that a human
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is required to find a test oracle matching the test data — which again is likely more
difficult with unrealistic or unreadable tests.

4.3 Test Oracles

In order to find faults, tests require test oracles, i.e., some means to check whether
the behavior observed during test execution matches the expected behavior. For ex-
ample, a test oracle for a simple function would consist of comparing the return
value of a function to an expected value. Recall the example test input of (0,0) for
our example power function in Section 2: For this input, we don’t expect a return
value, but an exception to occur; this expectation similarly represents a test ora-
cle. For more complex types of tests and programs, what constitutes a test oracle
similarly becomes a more complex question (Memon et al, 2003a).

The oracle problem is maybe the largest challenge on the path to full test au-
tomation: Section 3.2 described different techniques to generate tests automatically,
but in most cases, this refers only to generating test data or test inputs. The only
exception is if tests are derived from formal specifications or test models, as the
specification or model can also serve as an automated oracle. For example, given
a state machine model, we can check whether the system under test produces the
same outputs as the model, and whether the system reaches the same states as the
model. The main challenge with this approach lies in the required mapping between
abstract states and outputs to concrete observations.

Having a formal specification that serves as test oracle is the ideal case, but it
requires the human effort to generate an accurate specification in the first place, and
this needs to be maintained and kept up to date with the code base. Where such
a specification is not available, there is a range of different ways to address the
test oracle problem, and these are comprehensively surveyed by Barr et al (2015).
However, the test oracle problem remains one of the central problems in software
testing, and there is no ideal solution yet.

At the far end of the spectrum of test oracles is the common assumption that a
human developer or tester will provide that oracle for an automatically generated
test input. However, this can be challenging as discussed above, and recent exper-
iments (Fraser et al, 2015) suggest that simply dropping generated test inputs on
developers and hoping that they improve their testing with that are overly optimistic
— clearly, automated tools need to do more to support testers. One direction of
work that aims at providing tool support to developers and testers who have to cre-
ate test oracles lies in producing suggested oracles. For example, Fraser and Zeller
(2012) have shown that mutation analysis, as discussed earlier in this chapter, is a
useful vehicle to evaluate which candidate oracles are best suited for given test data.
However, it is clear that more work is required in order to provide suitable oracle
suggestions in more general settings.

An alternative source of oracles is provided by runtime checking, and this is very
well suited for combination with automated test generation. For example, any run-
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time environment provides a null oracle of whether the program crashed or not.
Beyond this, program assertions, originally introduced to support formal verifica-
tion of programs (Clarke and Rosenblum, 2006), can be checked at runtime, during
test execution. A classical program assertion is a Boolean expression included in
the source code, and typically raises an exception if the asserted condition is vi-
olated, but more elaborate variants have been made popular as part of the idea of
design by contract (Meyer, 1992), where object oriented classes are provided to-
gether with pre-/post-conditions and invariants; violations of such contract by auto-
matically generated tests can serve to find faults (Ciupa et al, 2007). Again, a main
challenge is that there is the human effort of creating these specifications in the first
place.

The challenge of the oracle problem goes beyond the problem of finding a spe-
cific expected output for a given input to a program: For many categories of pro-
grams it is more difficult to find oracles. For example, for scientific programs the
exact output is often simply not known ahead of time, and for randomised and
stochastic programs the output may change even when executed repeatedly with the
same input. This is a problem that was identified, once more, by Weyuker (1982).
Often, metamorphic testing (Chen et al, 1998) can be applied to some degree in such
situations, but the test oracle problem definitely has plenty of remaining challenges
in store.

4.4 Flaky Tests

When an automated test fails during execution, then that usually either means that
it has detected a fault in the program, or that the test is out of date and needs to
be updated to reflect some changed behavior of the program under test. However,
one issue that has arisen together with the increased automation is that, sometimes,
tests do not fail deterministically: A test that has intermittent failures is known as
a flaky test. Recent studies have confirmed this is a substantial problem in practice
(e.g., at Microsoft (Herzig and Nagappan, 2015), Google (Memon et al, 2017), and
on TravisCI (Labuschagne et al, 2017)).

Flaky tests can have multiple reasons (Luo et al, 2014). For example, multi-
threaded code is inherently non-deterministic since the thread schedule can vary
between test executions. It is a common (bad) practice in unit testing to use wait
instructions to ensure that some multi-threaded computation has completed. How-
ever, there are no guarantees, and it can happen that such a test sometimes fails on
a continuous testing platform if the load is high. Other sources of non-determinism
such as the use of Java reflection or iterations over Java HashSet or HashMap
data structures can similarly cause tests to sometimes pass and sometimes fail. Any
type of dependency on the environment can make a test flaky; for example, a test
accessing a web service might sometimes fail under a high network load. Depen-
dencies between tests are a further common source of flaky tests (Zhang et al, 2014).
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For example, if static (global) variables are read and written by different tests, then
the order in which these tests are executed has an influence on the result.

Common solutions to such problems are to use mock-objects to replace depen-
dencies, or to make sure that all tests are in clean environments (Bell and Kaiser,
2014). Recent advances also resulted in techniques to identify state polluting tests
(e.g. (Gyori et al, 2015; Gambi et al, 2018)). However, the problem of flaky tests
remains an ongoing challenge.

4.5 Legacy Tests

The focus of this chapter was mainly on how to derive more and better tests, and
how to evaluate these tests. With increased use of advanced testing techniques and
automation of these tests (e.g., using xUnit frameworks), a new problem in testing
is emerging: Sometimes we now may have too many tests. To some degree this is
anticipated and alleviated by regression testing techniques discussed in this chapter.
Most of these techniques aim at reducing the execution time caused by a large set of
tests. This, however, is not the only problem: Automated tests need to be maintained
like any other code in a software project. The person who wrote a test may have long
left the project when a test fails, making the question of whether the test is wrong or
the program under test is wrong a difficult one to answer. Indeed, every test failure
may also be a problem in the test code. Thus, not every test provides value. There
is some initial work in the direction of this challenge; in particular, Herzig et al
(2015) skip tests that are likely not providing value, but ultimately they are still kept
and executed at some point. This leaves the question: when do we delete tests? A
related problem that may also arise from large test sets, but maybe one that is easier
to answer than the first one, is which of a set of failing tests to inspect first. This is
related to the larger problem of prioritizing bugs — not every bug is crucial, and so
not every failing test may have a high priority to fix. How can we decide which tests
are more important than others?

4.6 Non-functional Testing

Testing research in general, but also this chapter, put a strong emphasis on func-
tional correctness of the program under test. Almost all techniques we discussed
in this chapter are functional testing techniques. This, however, is only one facet
in the spectrum of software quality. There are many non-functional properties that
a program under test may need to satisfy, such as availability, energy consumption
performance security reliability, maintainability, safety, testability, or several others.
Considering all these properties, it might be somewhat surprising that research fo-
cuses mostly on functional properties. This might be because functionality is often
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easier to specify clearly, whereas specifying non-functional requirements is often a
somewhat more fuzzy problem.

Consequently, automated approaches are most commonly applied to non-functional
properties that are easy to measure, such as performance and energy consumption.
Performance is particularly of concern for web applications as well as embedded
real-time systems, and, for example, Grechanik et al (2012) used a feedback-loop
where generated tests are used to identify potential performance bottlenecks, which
are then tested more. Other problems related to performance are the behavior under
heavy load (load testing), for which test generation has also been demonstrated as
a suitable technique by, for example, Avritzer and Weyuker (1995) and Zhang et al
(2011). The recent surge of mobile devices and applications has fostered research
on measuring and optimizing the energy consumption of these applications. Testing
and analysis has been suggested as possible means to achieve this (e.g., (Hao et al,
2013)). Besides these non-functional properties, automation is sparse in most areas.
Search-based testing would be particularly well suited to target non-functional test-
ing, in particular as anything quantifiable can already support a basic search-driven
approach (Harman and Clark, 2004). However, Afzal et al (2009) only identified 35
articles on search-based testing of non-functional properties in their survey, showing
that there is significant potential for future work.

In particular, one specific area that is already seeing increased interest, but will
surely see much more attention in the future, is the topic of testing for security —
after all, most security leaks and exploits are based on underlying software bugs. A
popular approach to security testing currently is fuzzing (see Section 3.3), but there
are many dimensions of security testing, as nicely laid out by Potter and McGraw
(2004).

4.7 Testing Domain-Specific Software

While readers of books like this one will presumably have a general interest in soft-
ware engineering, for example as part of higher education, software is not written
only by professional software engineers. There is an increasing number of peo-
ple who are not software engineers, but write computer programs to help them in
their primary job. This is known as end-user development (Lieberman et al, 2006),
and the prime example of this are scientists, physicists, and engineers. Spreadsheet
macros provided a further surge to end-user programming activities, and today lan-
guages such as Python and PHP let anyone, from doctors, accountants, teachers,
to marketing assistants, write programs. Without software engineering education,
these end-user programmers usually have little knowledge about systematic testing
and the techniques described in this chapter. Nevertheless, software quality should
be of prime concern even for an accountant writing a program that works on the
credit history of a customer. Conveying knowledge about testing to these people,
and providing them with the tools and techniques they need to do testing, is a major
challenge of ever increasing importance.
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4.8 The Academia-Industry Gap

A recurring topic at academic testing conferences these days is the perceived gap
between software testing research and software testing practice. Researchers de-
velop advanced coverage and mutation analysis techniques, and practitioners mea-
sure only statement coverage if they measure coverage at all. Researchers develop
automated specification-driven testing techniques, while practitioners often prefer
to write code without formal specifications. Researchers develop automated test
generation techniques, while in practice automated test execution is sometimes al-
ready considered advanced testing. While this chapter is not the place to summarize
the ongoing debate, the academia-industry gap does create some challenges worth
mentioning in this section on future challenges in testing: Researchers need to get
informed about the testing problems that industry faces; practitioners need to re-
ceive word about the advanced testing techniques available to help them solve their
problems. How these challenges can be overcome is difficult to say, but one opportu-
nity is given by development of more testing tools that practitioners can experiment
with, and data-sets that researchers can investigate.

5 Conclusions

If software is not appropriately tested, then bad things can happen. Depending on the
type of software, these bad things range from mild annoyance to people being killed.
To avoid this, software needs to be tested. In this chapter, we discussed techniques
to create tests systematically and automatically, how to evaluate the quality of these
test sets, and how to execute tests in the most efficient way. Knowledge of these
aspects are crucial for a good tester, but there are other aspects that a good tester
must also face which we did not cover in this chapter.

Who does the testing?

Some years ago, the answer to this question was clear: Testing principle number 2 in
Myer’s classical book (Myers, 1979) states that a programmer should avoid testing
their own program. The reasoning behind this principle is intuitive: A person who
made a mistake while writing a program may make the same mistake again during
testing, and programmers may also be “gentle” when testing their program, rather
than trying to break it. Thus, testing would be performed by dedicated quality assur-
ance teams, or even outsourced to testing companies. Today, the rise of test-driven
development (Beck, 2003) and the heavy focus of agile development methodologies
on testing means that a lot of testing effort now lies with the developers. Develop-
ers write unit tests even before they write code, developers write integration tests
that are frequently executed during continuous integration. Software is even tested
by the users — for example, Google’s GMail application was in “beta” status for
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years, meaning that everyone using it was essentially a tester. Continuous deliv-
ery (Humble and Farley, 2010) opens up new possibilities for testing; for example,
“canary releases” are used to get small subgroups of users try and test new features
before they are released to the wider public. Thus, the question of who does the
testing is difficult to answer today.

When is testing performed?

Classical software engineering education would teach us that the earlier a bug is
discovered, the cheaper it is to detect, thus testing ideally starts even before coding
starts; the V-model comes to mind. The same arguments as outlined above also
mean that it is no longer clear when testing is done; this depends on who does the
testing. The argument of the increasing costs when bugs are found in later phases of
the software project are also blurred by the frequent releases used in today’s agile
software world. We have all become used to updating all the apps on our devices
frequently as new bugs are fixed after release. For non-safety critical software, we
as users are essentially permanent beta-testers. It is still true that the earlier a bug
is fixed the better; for example, people may stop using software and switch to a
different app if they hit too many bugs. However, even more so than finding bugs as
early as possible is to find the important bugs as early as possible.

What other tasks are involved in a testing process?

Developer testing is sometimes ad hoc; you write the tests you need to help you
write a new feature or debug a broken feature. Systematic testing is usually less ad
hoc, in particular if performed by dedicated testers or quality assurance teams. In
this case, there are often strict processes that testers have to follow, starting with a
test planning phase, and producing elaborate test reports as the part of the process.
This particularly holds when process models like Capability Maturity Model Inte-
gration (CMMI) are applied. Classical software engineering literature covers this
extensively.
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